
CS1101S, Semester I, 2012/2013—Contest 3-3 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Contest 3-3

3D Runes

Start date: 23 August 2012
Due: 3 September 2012, 23:59

Readings:

• Textbook Sections 1.1.1 to 1.1.4

Background:

You have became adept as a JFDI initiate but so are many others like yourself. With everyone
attempting to prove themselves superior, it is certain unhealthy rivalry will form amongst the
fresh initiates.

But the masters have already foreseen this problem through the many generations of JFDI
knights they had trained. Initially masquerading as a rumour, news of the semi-annual rune
conjuring contest quickly became the hottest of discussion topics.

With exquisite and intricate winning runes being displayed prominently in the grand hall and
the hustle and bustle of preparation, you barely managed to get hold of an instructor to get the
details. Clearly, it was not intended for all initiates to participate but only those possessing true
passion and are pure of essence. Are you?

Task 1:

This contest represents the 3D runes segment of the annual rune conjuring contest which you
may participate in.

Being masters of rune manipulation, you are to use your creativity and design some textured
and contoured runes.

You may submit up to 3 separate 3D runes. Each rune should be submitted in its own source
file such that by running the JavaScript code in the file with its respective HTML file, the rune
will be created in the viewport.

More information on the contest, such as judging criteria, will be provided as the due date
approches.

Additional Instructions: The goal of this contest is to build cool 3D runes. Your submission
must either be a stereogram, anaglyph or hollusion. Please state clearly in your submission
which of these three forms your submission is meant to be.

Hint: You may want to check out the Appendix before you start working on this contest.



CS1101S, Semester I, 2012/2013—Contest 3-3 2

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/runes.js

• contest 3-3 1.html

• contest 3-3 1.js

Submission

To submit your work to the Academy, click the upload button on the mission page and upload
your rune source files. Please name the files in the format yourname 3d contest x.js where x
is from 0 to 2. After you have uploaded all your files, click ”Finalize Submission”. Note that
submission is final and that any mistakes in submission requires extra effort from a tutor or the
lecturer himself to fix.



CS1101S, Semester I, 2012/2013—Contest 3-3 3

Appendix: image to painter and function to painter

In this section we provide you with two more tools that you can use to create depth map (that in
turns can be used to generate stereogram). They are image to painter and function to painter.

The image to painter converts a given image into a depth map painter. For example, the com-
mand:

var cs1101s = image_to_painter("cs1101s.jpg");
show(overlay(cs1101s, heart_bb));

will produce the following depth map (notice that “CS1101S” comes from the file cs1101s.jpg).

If we use stereogram instead of show, we got the stereogram shown in figure 1. On the other
hand, using anaglyph would get us the anaglyph shown in figure 2. Remember that you can
also use hollusion to create 3D runes. (a hollusion is not shown as it cannot actually be viewed
in the .pdf)

Note: image to painter expects the input image to be 600× 600 pixels in size. Bigger img/con-
test/3.3 may be cropped. Also, loading the image might take quite some time, please be patient.
(:

Lastly, we shall introduce function to painter. As mentioned in Appendix A, a depth map can
be seen as a visualization of a z-function. A z-function is a function that, given a point(x, y) will
return the depth of the object at that point z, 0 ≤ z ≤ 1. function to painter accepts such
z-function and convert it to a depth map painter. Note that the passed function must take two
parameters x and y, 0 ≤ x, y ≤ 600 (you might ask: ”Why 600?” Can you guess why? See footnote
for answer1). function to painter samples the given z-function at integer interval of x and
y (you may use this fact to aid you in creating the z-function). The following example shows
a combination advanced techniques that may help in creating a z-function easily. While the
example simply creates two concentric circles, it involves translation of the origin (to the point
(300, 300)) and using comparison operator to easily specify a range of (x, y) that returns the same
value. The code should be self-documenting enough that you should be able to read it easily
(knowing that equation of a circle centred at the origin with radius a is given by x

2 + y
2 = a

2).

1The reason is that the viewport height is 600 pixels; most of the patterns in quilts are generated taking this into
accounts. If we were to sample less, the image would be more grainy. Also, a square painter is easier to do than a
rectangle.



CS1101S, Semester I, 2012/2013—Contest 3-3 4

Figure 1: Stereogram created from overlaying “cs1101s” (generated by image to painter) and heart bb.

// Note that radius1 should be less than radius2. Can you see why?
// How would you modify this such that the requirement is no longer necessary?
function create_conc_circle_zf(radius1, depth1, radius2, depth2){

var a1sq = Math.pow(radius1, 2);
var a2sq = Math.pow(radius2, 2);
return function(x, y){

function helper(x, y){
var sqsum = Math.pow(x, 2) + Math.pow(y, 2);
if(sqsum < a1sq){

return depth1;
}else if(sqsum < a2sq){

return depth2;
}else{

return 1;
}

}
return helper(x - 300, y - 300);

}
}

show(function_to_painter(create_conc_circle_zf(90, 1/3, 270, 2/3)));

This will result in the following depth map.



CS1101S, Semester I, 2012/2013—Contest 3-3 5

Figure 2: Anaglyph created from overlaying “cs1101s” (generated by image to painter) and heart bb.


	Background:
	Task Files

	Submission
	Appendix: image_to_painter and function_to_painter

