
CS1101S, Semester I, 2012/2013—Discussion Group Exercises 2 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Discussion Group Exercises 2

Problems:

1. Suppose we define the function:

function f(g) {
return g(4);

}

Then we have

f(Math.sqrt);
2

f(function(z) { return z * (z + 1); });
20

What happens if we (oddly) ask the interpreter to evaluate the combination f(f);? Explain.

2. Draw the tree illustrating the process generated by the cc (count-change) function given in
the lecture, in making change for 11 cents, using the denominations 50, 20, 10, 5 and 1.
What are the orders of growth of the space and number of steps used by this process as the
amount to be changed increases?

3. A function f is defined by the rule that f(n) = n if n < 3 and f(n) = f(n−1)+2f(n−2)+3f(n−3)
if n ≥ 3.

(a) Write a function that computes f by means of a recursive process.

(b) Write a function that computes f by means of an iterative process.

4. The following pattern of numbers is called Pascal’s triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

The numbers at the edge of the triangle are all 1, and each number inside the triangle is
the sum of the two numbers above it.

(a) Write a function that computes elements of Pascal’s triangle by means of a recursive
process, i.e. the function should take two arguments, row and column, and return the
element for the specified column and row. Note that only one element must be returned
and NOT the entire row. E.g. calling the method with row = 3 and column = 2 should
return 2. Likewise calling the method with row = 5 and column = 3 should return 6.

(b) Convert the function you wrote as a solution to (a) into a iterative process.



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 2 2

5. Write an iterative, logarithmic-time version of together copies of given in the lecture.

There are more discussion group exercises in the next section.

Higher-Order Functions

One of the things that makes JavaScript different from other common programming lan-
guages is the ability to operate with higher-order functions, namely, functions that manip-
ulate and generate other functions. The problem set will give you extensive practice with
higher-order functions and simple compound data types, in the context of a language for
graphing two-dimensional curves and other shapes.

In the problem set, we will be using many functions which may be applied to many different
types of arguments and may return different types of values. To keep track of this, it will
be helpful to have some simple notation to describe types of JavaScript values.

Two basic types of values are JS-Num and JS-Bool. JS-Num are the JavaScript numbers
such as 3, -4.2, 6.931479453e89. JS-Bool are the truth values true,false. The function
Math.sqrt may be applied to a JS-Num and will return another JS-Num. We indicate this
with the notation:

Math.sqrt : JS-Num → JS-Num

If f and g are functions of type JS-Num → JS-Num, then we may compose them:

function compose(f, g){
return function(x){

return f(g(x));
}

}

Thus, for example compose(Math.sqrt, Math.log) is the function of type JS-Num →

JS-Num that returns the square root of the logarithm of its argument, while compose(Math.log,
Math.sqrt) returns the logarithm of the square root of its argument:

Math.log(2);
// Value: 0.6931471805599453

(compose(Math.sqrt, Math.log))(2);
// Value: 0.8325546111576977

(compose(Math.log, Math.sqrt))(2);
// Value: 0.3465735902799727

As we have used it above, the function compose takes as arguments two functions of type
F = JS-Num → JS-Num, and returns another such function. We indicate this with the
notation:

compose : (F, F ) → F

Just as squaring a number multiplies the number by itself, thrice of a function com-
poses the function three times. That is, thrice(f)(n) will return the same number as
f(f(f(n))):

function thrice(f) {
return compose(compose(f, f), f);

}



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 2 3

thrice(Math.sqrt)(6561);
// Value: 3

Math.sqrt(Math.sqrt(Math.sqrt(6561)));
// Value: 3

As used above, thrice is of type (F → F ). That is, it takes as input a function from numbers
to numbers and returns the same kind of function. But thrice will actually work for other
kinds of input functions. It is enough for the input function to have a type of the form
T → T , where T may be any type. So more generally, we can write

thrice : (T → T ) → (T → T )

Composition, like multiplication, may be iterated. Consider the following:

function identity(x) { return x; }

function repeated(f, n) {
if (n === 0) {

return identity;
} else {

return compose(f, repeated(f, n - 1));
}

}

repeated(Math.sin, 5)(3.1);
// Value: 0.041532801333692235

Math.sin(Math.sin(Math.sin(Math.sin(Math.sin(3.1)))));
// Value: 0.041532801333692235

repeated : ((T → T ),JS-Nonneg-Int) → (T → T )

6. The type of thrice is of the form (T ′ → T ′) (where T ′ happens to equal (T → T )), so we can
legitimately use thrice as an input to thrice!

For what value of n will thrice(thrice)(f)(0) return the same value1 as repeated(f,
n)(0)?

See if you can now predict what will happen when the following expressions are evaluated.
Briefly explain what goes on in each case.

Note: Function sqr and add1 are defined as follows:

function sqr(x) {
return x * x;

}
function add1(x) {

return x + 1;
}

(a) thrice(thrice)(add1)(6)

1“Sameness” of function values is a sticky issue which we don’t want to get into here. We can avoid it by assuming
that f is bound to a value of type F , so evaluation of thrice(thrice)(f)(0) will return a number.



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 2 4

(b) thrice(thrice)(identity)(compose)

(c) thrice(thrice)(sqr)(1)

(d) thrice(thrice)(sqr)(2)


	Higher-Order Functions

