
CS1101S, Semester I, 2012/2013—Discussion Group Exercises 3 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Discussion Group Exercises 3

Problems:

1. Simpson’s Rule is a method of numerical integration. Using Simpson’s Rule, the integral of
a function f from a to b is approximated as

h

3
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ yn]

where h = b−a

n
, for some even integer n, and yk = f(a + kh). (Increasing n increases the

accuracy of the approximation.) Define a function that takes as arguments f , a, b, and n

and returns the value of the integral, computed using the above Simpson’s Rule. Use your
function and attempt to integrate a cube between 0 and 1 (with n = 100 and n = 1000).

Hint: A sample call with f(x) = x3, a = 0, b = 1, n = 100 should be/look like this:

calc_integral(function(x){ return Math.pow(x, 3); }, 0, 1, 100);

2. Consider the following function sum:

function sum(term, a, next, b){
if(a > b){

return 0;
}else{

return term(a) + sum(term, next(a), next, b);
}

}

This function generates a linear recursion. The function can be rewritten so that the sum-
mation is performed iteratively. Show how to do this by filling in the missing expressions in
the following definition:

function sum(term, a, next, b){
function iter(a, result){

if(<???>){
return <???>;

}else{
return iter(<???>, <???>);

}
}
return iter(<???>, <???>);

}

3. Write a function g(k) that solves the following product using the function fold.

g(k) =

k∏

x=0

(x− (x+ 1)2)



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 3 2

Note that big-Pi (Π) notation used for product in the same way Sigma (Σ) notation is for sum.
The code for fold is provided for you below.

function fold(op, f, n){
if(n == 0){

return f(0);
}else{

return op(f(n), fold(op, f, n - 1);
}

}

4. (a) Show that sum is a special case of a still more general notion called accumulate that
combines a collection of terms, using some general accumulation function combiner:

accumulate(combiner, null_value, term, a, next, b);

Accumulate takes as arguments the same term and range specifications as sum, to-
gether with a combiner function (of two arguments) that specifies how the current term
is to be combined with the accumulation of the preceding terms and a null-value that
specifies what base value to use when the terms run out. Write the accumulate func-
tion and show how sum can be defined as a simple call to accumulate.

(b) If your accumulate function generates a recursive process, write one that generates
an iterative process. If it generates an iterative process, write one that generates a
recursive process.

5. You can obtain an even more general version of accumulate by introducing the notion of a
filter on the terms to be combined. That is, combine only those terms derived from values in
the specified range that satisfy a specified condition. The resulting filtered accumulate
abstraction takes the same arguments as accumulate, together with an additional predicate
of one argument that specifies the filter. Write filtered accumulate as a function. Show
how to express the following using filtered accumulate:

(a) the sum of the squares of all the prime numbers in the interval a to b inclusive (assum-
ing that you have a is prime predicate already written)

(b) the product of all the positive integers less than n that are relatively prime to n (i.e., all
positive integers i < n such that GCD(i, n) = 1). You can assume that you already have
a function gcd that returns the gcd of a and b, if you needed such a function.

6. (a) Consider the problem of representing line segments in a plane. Each segment is rep-
resented as a pair of points: a starting point and an ending point. A point can be
represented as a pair of numbers: the x coordinate and the y coordinate. Specify a
constructor make point and selectors x point and y point that define this represen-
tation. Subsequently, define a constructor make segment and selectors start segment
and end segment that define the representation of segments in terms of points. Finally,
using your selectors and constructors, define a function midpoint segment that takes
a line segment as argument and returns its midpoint (the point whose coordinates are
the average of the coordinates of the endpoints).

To try your functions, you may find the following function (that print a given point
argument) useful:

function print_point(p){
display("(" + x_point(p) + "," +

y_point(p) + ")");
}



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 3 3

This is an example of why data abstraction is useful. Because print point only uses
the selectors for your new compound data object, it does not need to know anything
about how your object is implemented. Furthermore, if you decided to modify your
object’s implementation, there is virtually no need to modify print point.

(b) Implement a representation for a rectangle in a plane. In terms of your constructors
and selectors, create functions that compute the perimeter and the area of a given
rectangle.

Now implement a different representation for rectangles. Can you design your system
with suitable abstraction barriers, so that the same perimeter and area functions will
work using either representation?


