
CS1101S, Semester I, 2012/2013—Discussion Group Exercises 5 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Discussion Group Exercises 5

Problems:

1. Concrete Abstractions, Exercise 13.33

The three procedures below are the constructor, mutator, and selector for a new kind of
object, the widget. Describe in English how widgets behave, from the standpoint of someone
using these three procedures but not knowing what is going on inside them or how the
widgets are being represented. That is, your explanation shouldnt talk about vectors or
vector positions at all but instead should talk about how widget insertion and retrieval
relate. If some insertions and retrievals are done, how could you predict what each retrieval
was going to retrieve? Once youve provided this outsiders perspective, provide a justification
of it in terms of the internal behavior of the procedures. That is, explain how it is that the
vector operations these procedures do result in the previously stated external behavior.

A vector acts like a list, except that it has O(1) access time instead of O(n). vector set(vector,
position, value) changes the object at position to a new value. vector ref(vector, position)
gets the object at position.

function make_widget() {
var widget = make_vector(3);
vector_set(widget, 0, "empty");
vector_set(widget, 1, "empty");
vector_set(widget, 2, 0);
return widget;

}

function insert_into_widget(widget, value) {
var place = vector_ref(widget, 2);
vector_set(widget, place, value);
vector_set(widget, 2, (place + 1) % 2);
return "done";

}

function retrieve_from_widget(widget) {
return vector_ref(widget, vector_ref(widget, 2));

}

2. SICP, Exercise 3.1

An accumulator is a function that is called repeatedly with a single numeric argument and
accumulates its arguments into a sum. Each time it is called, it returns the currently
accumulated sum. Write a function make accumulator that generates accumulators, each
maintaining an independent sum. The input to make accumulator should specify the initial
value of the sum.



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 5 2

var A = make_accumulator(5);
A(10);
> 15
A(10);
> 25

3. SICP, Exercise 3.2

In software testing applications, it is useful to be able to count the number of times a given
function is called during the course of a computation. Write a function make monitored
that takes as input a function, f, that itself takes one input. The result returned by
make monitored is a third function, say mf, that keeps track of the number of times it has
been called by maintaining an internal counter. If the input to mf is the string ”get count”,
then mf returns the value of the counter. If the input is the string ”reset count”, then mf
resets the counter to zero. For any other input, mf returns the result of calling f on that
input and increments the counter. For instance, we could make a monitored version of the
Math.sqrt function:

var s = make_monitored(Math.sqrt);

s(100);
> 10
s("get_count");
> 1
s("reset_count");
s("get_count");
> 0

4. SICP, Exercise 3.5

Monte Carlo integration is a method of estimating definite integrals by means of Monte Carlo
simulation. Consider computing the area of a region of space described by a predicate P(x,
y) that is true for points (x, y) in the region and false for points not in the region. For
example, the region contained within a circle of radius 3 centered at (5, 7) is described by
the predicate that tests whether (x - 5)2̂ + (y - 7)2̂ ¡ 32̂. To estimate the area of the region
described by such a predicate, begin by choosing a rectangle that contains the region. For
example, a rectangle with diagonally opposite corners at (2, 4) and (8, 10) contains the circle
above. The desired integral is the area of that portion of the rectangle that lies in the region.
We can estimate the integral by picking, at random, points (x, y) that lie in the rectangle,
and testing P(x, y) for each point to determine whether the point lies in the region. If we
try this with many points, then the fraction of points that fall in the region should give an
estimate of the proportion of the rectangle that lies in the region. Hence, multiplying this
fraction by the area of the entire rectangle should produce an estimate of the integral.

Implement Monte Carlo integration as a procedure estimate integral that takes as argu-
ments a predicate P, upper and lower bounds x1, x2, y1, and y2 for the rectangle, and the
number of trials to perform in order to produce the estimate. Your procedure should use the
same monte-carlo procedure that was used above to estimate . Use your estimate integral
to produce an estimate of by measuring the area of a unit circle.

You will find it useful to have a procedure that returns a number chosen at random from a
given range. The following random in interval procedure implements this.

function random_in_interval(from,to) {
return Math.random()*(to-from)+from;

}



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 5 3

5. The following procedure is quite useful, although obscure:

function mystery(x) {
function loop(x, y) {

if (is_empty_list(x)) {
return y;

} else {
var temp = tail(x);
set_tail(x, y);
return loop(temp, x);

}
}
return loop(x, []);

}

Loop uses the temporary variable temp to hold the old value of the tail of x, since the set tail
on the next line destroys the tail. Explain what mystery does in general. Suppose v is
defined by var v = list(1, 2, 3, 4). Draw the box-and-pointer diagram that represents the
list to which v is bound. Suppose that we now evaluate var w = mystery(v). Draw box-and-
pointer diagrams that show the structures v and w after evaluating this expression. What
would be printed as the values of v and w?

6. SICP, Exercises 3.16 and 3.17

Ben Bitdiddle decides to write a procedure to count the number of pairs in any list structure.
”Its easy,” he reasons. ”The number of pairs in any structure is the number in the head
plus the number in the tail plus one more to count the current pair.” So Ben writes the
following function:

function count_pairs(x) {
if (!is_pair(x)) {

return 0;
} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));
}

}

Show that this function is not correct. In particular, draw box-and-pointer diagrams rep-
resenting list structures made up of exactly three pairs for which Bens procedure would
return 3; return 4; return 7; never return at all.

Devise a correct version count-pairs that returns the number of distinct pairs in any struc-
ture. (Hint: Traverse the structure, maintaining an auxiliary data structure that is used to
keep track of which pairs have already been counted.)

7. Sorting Hat
i) Write a function find smallest that, given a list of integers, will return the first pair in the
list whose head is the smallest integer in the whole list. It should return [] if the given list
is empty. Determine the order of growth of this procedure. Sample runs:

find_smallest([]);
> []
find_smallest(list(1,2,3));
> [1, [2, [3, []]]]
find_smallest(list(3,2,1));
> [1, []]
find_smallest(list(6,6,4,2,4,3,5,2,3));
> [2, [4, [3, [5, [2, [3, []]]]]]]



CS1101S, Semester I, 2012/2013—Discussion Group Exercises 5 4

ii) Write a new function find pair before smallest by modifying or making use of find smallest
to return a list beginning with the element before the smallest integer in the list. The
function should return [] if the smallest integer is already at the front of the list. Sample
runs:

find_pair_before_smallest(list(6, 6, 4, 2, 4, 3, 5, 2, 3));
> [4, [2, [4, [3, [5, [2, [3, []]]]]]]]
find_pair_before_smallest(list(1, 2, 3));
> []

iii) Write a function shift smallest that, given a list of integers, will modify the list such that
the first smallest integer in the list is shifted to the front of the list and returning that list.
It should not modify the order of the rest of the elements of the list at all. Hint: You will
need to use set-head or set-tail in this question. Sample runs:

var a = shift_smallest(list(1,2,3));
a
> [1, [2, [3, []]]]
var b = shift_smallest(list(6,6,4,2,4,3,5,2,3));
b
> [2, [6, [6, [4, [4, [3, [5, [2, [3, []]]]]]]]]]
var a = list(3,2,1);
var b = shift_smallest(a);
a
> [3, [2, []]]
b
> [1, [3, [2, []]]]

iv) Armed with the function shift smallest, we are now able to write a function that sorts a
list of integers from smallest to biggest. The function sort list accepts a list of integers as its
argument, and modifies the list such that the members are sorted from smallest to biggest.
Determine the order of growth if this function.

v) A comparator is a general term for a function that takes two parameters (not necessarily
numbers) and returns true if the first parameter is strictly smaller than the second param-
eter. In this sense, a comparator determines the ordering of the two parameters. Here is an
example of a comparator:

function person_compare(p1, p2) {
return p1("get_name") < p2("get_name");

}

Write a function sort list with comparator that accepts a list of things and a comparator
that is able to compare any two members of the given list. The function should sort the list
with respect to the ordering specified by the given comparator.

vi) Is the two sorting procedures you implemented above stable? Do you know what is the
name of the sorting algorithm we just implemented?


