
CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Discussion Group Exercises 7

Problems:

Getting started

1. Describe the streams A and B produced by the following definitions. Assume that integers
is the stream of positive integers (starting from 1):

function scale_stream(c, stream) {
return stream_map(function (x){return c*x;}, stream);

}

var A = pair(1, function(){return scale_stream(2, A)});

function mul_streams(a,b) {
return pair(head(a)*head(b),

function() {
return mul_streams(stream_tail(a), stream_tail(b));

});
}

var B = pair(1, function(){return mul_streams(B, integers);});

Task Files

• lib/list.js

• lib/stream.js

• discussion 7 1.html

• discussion 7 1.js

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 2

Stream of pairs

2. Given a stream s the following function returns a stream of pairs of elements from s:

function stream_pairs(s) {
if (is_empty_list(s)) {

return [];
} else {

return stream_append(
stream_map(

function(sn){
return list(head(s), sn);

},
stream_tail(s)),

stream_pairs(stream_tail(s)));
}

}

(a) Suppose that ints is the (finite) stream 1, 2, 3, 4, 5. What is stream_pairs(ints)?

(b) Give the clearest explanation that you can of how stream_pairs works.

(c) Suppose that integers is the infinite stream of positive integers. What is the result of
evaluating

var s2 = stream_pairs(integers);

Hint: Note that the function stream_append is defined in stream.js a follows:

function stream_append(xs, ys) {
if (is_empty_list(xs)) {

return ys;
} else {

return pair(head(xs),
function() {

return stream_append(stream_tail(xs),
ys);

});
}

}

(d) Consider the following variant of stream_append, called stream_append_pickle and
the function stream_pairs2 which makes use of it.

function stream_append_pickle(xs, ys) {
if (is_empty_list(xs)) {

return ys();
} else {

return pair(head(xs),
function() {

return stream_append_pickle(stream_tail(xs),
ys);

});
}

}

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 3

function stream_pairs2(s) {
if (is_empty_list(s)) {

return [];
} else {

return stream_append_pickle(
stream_map(

function(sn){
return list(head(s), sn);

},
stream_tail(s)),

function() {
return stream_pairs(stream_tail(s));

});
}

}

var s2 = stream_pairs2(integers);

Why does the function stream_pair2 solve the problem that arose in the previous
question?

(e) What are the first few elements of stream_pairs2(integers)? Can you suggest a
modification of stream_pairs2 that would be more appropriate in dealing with infinite
streams?

Task Files

• lib/list.js

• lib/stream.js

• discussion 7 2.html

• discussion 7 2.js

Using streams to represent power series

3. The following power series

ex = 1 + x+
x2

2
+

x3

3 · 2
+

x4

4 · 3 · 2
+ · · ·

cosx = 1−
x2

2
+

x4

4 · 3 · 2
− · · ·

sinx = x−

x3

3 · 2
+

x5

5 · 4 · 3 · 2
− · · ·

can be represented as streams of infinitely many terms. That is, the power series

a0 + a1x+ a2x
2 + a3x

3 + · · ·

will be represented as the infinite stream whose elements are a0, a1, a2, a3,
1

1In this representation, all streams are infinite: a finite polynomial will be represented as a stream with an infinite
number of trailing zeroes.

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 4

Why would we want such a method? Well, let’s separate the idea of a series representation
from the idea of evaluating a function. For example, suppose we let f(x) = sinx. We can
separate the idea of evaluating f , e.g., f(0) = 0, f(.1) = 0.0998334, from the means we use to
compute the value of f . This is where the series representation is used, as a way of storing
information sufficient to determine values of the function. In particular, by substituting a
value for x into the series, and computing more and more terms in the sum, we get better
and better estimates of the value of the function for that argument. This is shown in the
table, where sin 1

10
is considered.

Coefficient xn term sum value

0 1 0 0 0

1 1

10

1

10

1

10
.1

0 1

100
0 1

10
.1

- 1

6

1

1000
- 1

6000

599

6000
.099833333333

0 1

10000
0 599

6000
.099833333333

1

120

1

100000

1

12000000

1198001

12000000
.09983341666

The first column shows the terms from the series representation for sine. This is the infinite
series with which we will be dealing. The second column shows values for the associated
powers of 1

10
. The third column is the product of the first two, and represents the next term

in the series evaluation. The fourth column represents the sum of the terms to that point,
and the last column is the decimal approximation to the sum.

With this representation of functions as streams of coefficients, series operations such as
addition and scaling (multiplying by a constant) are identical to the basic stream operations.
We provide series operations, though, in order to implement a complete power series data
abstraction:

function add_streams(s1, s2) {
if (is_empty_list(s1)) {

return s2;
} else if (is_empty_list(s2)) {

return s1;
} else {

return pair(head(s1) + head(s2),
function() {

return add_streams(stream_tail(s1),
stream_tail(s2));

});
}

}

function scale_stream(c, stream) {
return stream_map(function(x){

return c * x;
},
stream);

}

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 5

var add_series = add_streams;

var scale_series = scale_stream;

function negate_series(s) {
return scale_series(-1, s);

}

function subtract_series(s1, s2) {
return add_series(s1, negate_series(s2));

}

We also provide two ways to construct series. The function coeffs_to_series takes a list
of initial coefficients and pads it with zeroes to produce a power series. For example,

coeffs_to_series(list(1,3,4))

produces the power series 1 + 3x+ 4x2 + 0x3 + 0x4 +

function coeffs_to_series(list_of_coeffs) {
var zeros = pair(0,

function(){
return zeros;

});
function iter(list) {

if (is_empty_list(list)) {
return zeros;

} else {
return pair(head(list),

function() {
return iter(stream_tail(list));

});
}

}
return iter(list_of_coeffs);

}

The function fun_to_series takes as argument a function p of one numeric argument and
returns the series

p(0) + p(1)x+ p(2)x2 + p(3)x3 + · · ·

The definition requires the stream non_neg_integers to be the stream of non-negative
integers: 0, 1, 2, 3,

function fun_to_series(fun) {
return stream_map(fun, non_neg_integers);

}

To get some initial practice with streams, write definitions for each of the following:

• alt_ones: the stream 1,−1, 1,−1, . . . in as many ways as you can think of.

• zeros: the infinite stream of 0’s. Do this using alt_ones in as many ways as you can
think of.

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 6

Now, show how to define the series:

S1 = 1 + x+ x2 + x3 + · · ·

S2 = 1 + 2x+ 3x2 + 4x3 + · · ·

Turn in your definitions and a couple of coefficient printouts to demonstrate that they work.

Task Files

• lib/list.js

• lib/stream.js

• discussion 7 3.html

• discussion 7 3.js

Multiplying series

4. Multiplying two series is a lot like multiplying two multi-digit numbers, but starting with
the left-most digit, instead of the right-most.

For example:

11111
x 12321

11111
22222
33333
22222
11111

136898631

Now imagine that there can be an infinite number of digits, i.e., each of these is a (possibly
infinite) series. (Remember that because each ”digit” is in fact a term in the series, it can
become arbitrarily large, without carrying, as in ordinary multiplication.)

Using this idea, complete the definition of the following function, which multiplies two se-
ries:

function mul_series(s1, s2)
{

return pair(<E1>,
function(){ return add_series(<E2>, <E3>); });

}

To test your function, demonstrate that the product of S1 (from exercise 3) and S1 is S2. What
is the coefficient of x10 in the product of S2 and S2? Turn in your definition of mul_series.
(Optional: Give a general formula for the coefficient of xn in the product of S2 and S2.)

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 7

Task Files

• lib/list.js

• lib/stream.js

• discussion 7 4.html

• discussion 7 4.js

Inverting a power series

5. Let S be a power series whose constant term is 1. We’ll call such a power series a “unit
power series.” Suppose we want to find the inverse of S, namely, the power series X such
that S · X = 1. To see how to do this, write S = 1 + SR where SR is the rest of S after the
constant term. Then we want to solve the equation S · X = 1 for S and we can do this as
follows:

S ·X = 1
(1 + SR) ·X = 1
X + SR ·X = 1

X = 1− SR ·X

In other words, X is the power series whose constant term is 1 and whose rest is given by
the negative of SR times X.

Use this idea to write a function invert_unit_series that computes 1/S for a unit power
series S. To test your function, invert the series S1 (from exercise 1) and show that you get
the series 1− x. (Convince yourself that this is the correct answer.) Turn in a listing of your
function. This is a very short function, but it is very clever. In fact, to someone looking at it
for the first time, it may seem that it can’t work—that it must go into an infinite loop. Write
a few sentences of explanation explaining why the function does in fact work, and does not
go into a loop.

Task Files

• lib/list.js

• lib/stream.js

• discussion 7 5.html

• discussion 7 5.js

6. Write a function div_series that divides two power series. The function div_series
should work for any two series, provided that the denominator series begins with a non-
zero constant term. Turn in a listing of your function along with three or four well-chosen
test cases (and demonstrate why the answers given by your division are indeed the correct
answers).

CS1101S, Semester I, 2012/2013—Discussion Group Exercises 7 8

Task Files

• lib/list.js

• lib/stream.js

• discussion 7 6.html

• discussion 7 6.js

	Task Files
	Task Files
	Task Files
	Task Files
	Task Files
	Task Files

