
CS1101S, Semester I, 2012/2013—Mission 2 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Mission 2

Rune Reading

Start date: 17 August 2012
Due: 23 August 2012, 23:59

Readings:

• Textbook Sections 1.1.1 to 1.1.4

Your instructors are pleased with your performance in the first mission. In this new mission, you
are expected to demonstrate your investigative skills. Mastery of the Force is nothing without the
ability to think and reason.

You need to open three doors, leading you another step closer towards the inner sanctum of the
JFDI temple.

In Lecture 2, we demonstrated how JavaScript can be used to generate runes. Now, you get to
try your hand at drawing them. You have been provided with matching pairs of HTML files and
JavaScript template files. You should complete your tasks within the template files, and test
them in their matching HTML files (You will need to refresh the HTML file if you make changes
in the JavaScript file).

These HTML files load the runes.js script library. In each file, we defined the viewport (where
your runes are going to be drawn) and the four runes discussed in class rcross bb, sail bb,
corner bb, and nova bb. For example, you can display rcross bb in the viewport with the
following command in the Console:

show(rcross_bb);

Don’t forget to clear the viewport when necessary with clear all().

Also defined in runes.js are the following functions as discussed in class:

• stack

• stack frac

• quarter turn right

• eighth turn left

• flip horiz

• flip vert

• turn upside down

• quarter turn left

• beside

• make cross

• repeat pattern

• stackn



CS1101S, Semester I, 2012/2013—Mission 2 2

In addition to the ones you saw in Lecture, we have also defined a few more basic runes that you
can use:

black bb: blank bb:

circle bb: heart bb:

pentagram bb:

In writing rather large, complex programs, one does not often understand (or even see) every
single line of code, since such programs are usually written by several people, each in charge of
smaller components. The key idea in functional abstraction is that as the programmer, you need
not understand how each function works. All you need to know is what each function does and
its signature (such as what parameters to pass). More specifically, you need not read the code
for the predefined functions listed above. You may refer to the lecture slides to understand
what arguments each function requires and its corresponding effect. Now we will use these
functions as primitives building blocks to draw our own pictures.



CS1101S, Semester I, 2012/2013—Mission 2 3

This mission consists of three tasks.

Task 1:

On the first door you find 4 basic runes and one complex rune separated by an empty space.
Clearly, your task would be to fill in this space with a descriptive function for the manipulation
of the 4 basic runes to create the complex one.

Write a function mosaic that takes four runes as arguments and arranges them in a 2×2 square,
starting with the top-right corner, going clockwise. In particular, the command

show(mosaic(rcross_bb, sail_bb, corner_bb, nova_bb));

should draw the following:

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/runes.js

• mission 2 1.html

• mission 2 1.js

Task 2:

On the second door, you find 2 runes displayed in a similar fashion. The only difference would
be that the complex rune now exhibits a different layout.

Write a function simple fractal that takes as argument a rune and returns a rune consisting
of the original rune and a pair of runes stacked on top of each other on its right. For example,
the following command:



CS1101S, Semester I, 2012/2013—Mission 2 4

show(simple_fractal(make_cross(rcross_bb)));

should draw the following:

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/runes.js

• mission 2 2.html

• mission 2 2.js

Task 3:

In the third and final door, you behold a similar sight to the previous door albeit with a slight
difference. It will be well for you to comprehend the similarities and differences.

Write a function fractal that takes as arguments a rune and an integer n > 0. It should generate
the rune below by means of a recursive process with the following command:

show(fractal(make_cross(rcross_bb), 3));

This should draw the following:



CS1101S, Semester I, 2012/2013—Mission 2 5

To determine that your function is correct for n > 3, check that the same command with n = 7

draws:

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/runes.js

• mission 2 3.html

• mission 2 3.js

Submission

To submit your work to the Academy, copy the contents from the template file(s) into the box that
says ”Your submission” on the mission page, click ”Save Code”, then click ”Finalize Submission”.
Note that submission is final and that any mistakes in submission requires extra effort from a
tutor or the lecturer himself to fix.


	Task Files
	Task Files
	Task Files
	Submission

