National University of Singapore
 School of Computing CS1101S: Programming Methodology (JavaScript)
 Semester I, 2012/2013
 Mission 3
 Beyond the Second Dimension

Start date: 23 August 2012
Due: 28 August 2012, 23:59

Readings:

- Textbook Sections 1.1.1 to 1.1.4

After passing through the three doors in your previous mission, you arrive in a large spacious hall with no visible exits except for a large hole in the ceiling from which a bright light illuminates the entire hall. In one corner, you find a raised terminal with an interface similar to the empty spaces you found on the doors.

In this third mission, you are expected to think spatially and show acute sense of perception. This will prove that you are able to look at problems from different angles and choose the appropriate line of attack.

Note: Before you start on this mission, you may want to read the background reading (see Appendix).

Runes (see previous mission) can be used as representations of 3D scenes. Instead of simple flat runes, the runes can possess surface components of varying depth - also known as depth maps. In this mission, darker areas are closer to you while lighter areas are further away. The following diagram illustrates how such runes - or depth maps - are interpreted. You can imagine the nova_bb as a pattern floating on the background:

Now, observe a slightly more complicated depth map and its isometric projection. The following depth map shows the nova_bb rune in black (darker) and hence is closer to you than the rcross_bb rune in light grey.

The next one shows the isometric projection of the mosaic rune from Mission 2.

Now that you are familiar with interpreting runes as depth maps, try generating your first stereogram, anaglyph or hollusion. Here, a stereogram refers to a Single Image Random Dot Stereogram (SIRDS) - an image that possesses 3D information that allows you to view the 3D object by use of the wall-eyed vision technique (http://en.wikipedia.org/wiki/Autostereogram\# Viewing_techniques). On the other hand, if you have difficulty viewing autostereograms, anaglyphs would be an easier option. Anaglyphs provide 3D stereoscopic view of 3D objects with the use of coloured lenses. In our case, you should use a Red-Cyan anaglyph glass (http://en. wikipedia.org/wiki/Anaglyph_glasses). Alternatively, you may try using hollusions, which are an implementation of wiggle stereoscopy, as a simple way of viewing stereograms.
Use the command stereogram, anaglyph or hollusion instead of show to generate stereograms or anaglyphs instead of depth maps. For example, to generate the stereogram for nova_bb, we can use the following command:
stereogram(nova_bb);
You can then start practicing with the runes you generated previously and convert them to stereograms or anaglyphs. Just remember to use stereogram(.), anaglyph(.) or hollusion(.) instead of show(.). Now is a good time to take a break and enjoy viewing your wonderful creations.

Creating Overlays

It's nice to be able to generate and view stereograms or anaglyphs, but knowing how to interpret depth maps is not enough to do this exercise. We shall now introduce several more transformation primitives that we have written for your usage. They are: overlay, overlay_frac, scale, scale_independent, and translate.

The combinators overlay and overlay_frac will help you create depth maps easily. These functions overlay two painters, one on top of the other. With overlay, each painter will occupy half of the depth range of the resulting depth map. Figure 1 provides two examples of depth maps produced by overlaying two painters.

Figure 1: Examples of depth maps laid out using overlay command. Note that the depth space is divided equally between the two runes. In (b), notice that the first rune (occupying the top-most layer) is a blank rune blank_bb.

To make things more interesting, consider the possibilities should you nest the overlay command. It works analogously to stack command introduced in lecture. overlay squeezes the original depth range occupied by each of the runes by half. For example, doing this:
overlay(overlay(nova_bb, heart_bb), rcross_bb)
will result in the creation of the following depth map:

(Hint: use show (overlay (overlay (nova_b.b, heart_b.b), rcross_b.b)) ; to display it.)
The first rune, which is an overlay of nova_bb and heart_bb, is squeezed by half and occupy the top half of the depth range. The second rune, rcross_bb, occupies the bottom half.

The combinator overlay_frac performs similarly as overlay. However, we may also specify the fraction of the total depth range occupied by each rune. This parameter determines the fraction of the depth range occupies by the first rune; the remainder of the depth range will be occupied by the second rune. In the following example, corner_bb takes up the top $1 / 4$ of the depth range, while heart_bb occupies the remainder $3 / 4$. (These two combinators are so similar that we actually implement one in term of the other. Can you guess which one is implemented in term of which one?

Figure 2: show(overlay_frac(1/4, corner_bb, heart_bb));
We have also defined scale and scale_independent. The former scales the rune according to the ratio argument, the latter allows greater flexibility as you are able to pass two ratio arguments, one for the horizontal scaling while another is for vertical scaling.
The last transformation tool we have is translate. The function translates the given rune by the given translation vector (x, y) where x and y are ratios of a 600×600 viewport centred in the middle of the viewport (the actual size of the viewport is actually 800×600 so you will find that when a rune is translated by 1 in the x-axis, it will still be visible whereas it will not when it is translated by 1 in the y-axis.) Note that positive x means translating to the right, while positive y means translating down.

(a) show(scale(1/2, heart_bb));

(b) show(scale_independent(3/4, $1 / 3$, heart_bb));

Figure 3: Examples of scale and scale_independent. In (a), heart_bb is scaled by $1 / 2$ both horizontally and vertically. In (b), it is scaled by $3 / 4$ horizontally and $1 / 3$ vertically.

Figure 4: Example of a translated heart_bb. This is the result of show(translate(0.1, 0.15, heart_bb));

Try creating an anaglyph with the following command and view them with the 3D anaglyph glasses that was issued:
anaglyph(overlay(scale(0.8, heart_bb), circle_bb));

This mission has two tasks.

Task 1:

Displayed prominently on the wall beside the terminal is are basic runes and a complex 3D rune of you are expected to conjure.
Write a function steps that takes four runes as arguments and arranges them in a 2×2 square, starting with the top-right corner, going clockwise, just like mosaic in Mission 2. However, the four runes are now placed at different depths as shown in the following example:

```
steps(rcross_bb, sail_bb, corner_bb, nova_bb)
```

will result in the following depth map:

Note that the rcross_bb is at the lowest level (lightest shade of grey) and nova_bb is at the highest level (black). Also, note that the four runes are spaced equally apart along the z-axis. Hint: You may want to make use of the blank painter blank_bb and/or reuse a function that you have defined previously.

Task Files

- lib/list.js
- lib/misc.js
- lib/graphics.js
- lib/runes.js
- mission_3_1.html
- mission_3_1.js

Task 2:

As you successfully entered the correct instruction into the terminal, massive stones begin to levitate from the center of the hall. By the time the ground stopped shaking, what you behold was a gigantic monolithic structure that was represented in the 3D rune - a 4 step stair like structure that allows you to ascend into the level above the hall.

In the space above, you encounter a similar hall, only this time, the 3 D rune you are expected to materialize is different. With some creativity, and the use of the overlay_frac and scale commands, you will need to create your next 3D structure.
Implement the function tree that takes as arguments a number of slices n and a rune and generates a stack of runes scaled and overlayed on top of each other.

For example, the following command
tree(4, circle_bb)
should produce the following depth map:

The generated tree must satisfy a few properties: the circle_bb at the top of the tree is scaled to $1 / 4$ of its original size (the tree has 4 layers); the next lower layer is scaled by $2 / 4$, and so on. Note that the bottom-most layer retains its original size. The different levels of the tree must also be spaced evenly apart.

Task Files

- lib/list.js
- lib/misc.js
- lib/graphics.js
- lib/runes.js
- mission_3_2.html
- mission_3_2.js

Submission

To submit your work to the Academy, copy the contents from the template file(s) into the box that says "Your submission" on the mission page, click "Save Code", then click "Finalize Submission". Note that submission is final and that any mistakes in submission requires extra effort from a tutor or the lecturer himself to fix.

Appendix: Background Reading on Stereograms

Here we provide some background information on how stereograms work and how they are generated. This material is purely for your reading pleasure. You do not have to understand how stereograms are generated (or read ${ }^{1}$) to complete the problem set. Read on if you're interested!
First, we need to understand how our eyes work to give us stereovision. We are able to see depth because we have two eyes that are spaced a distance apart. When we look at an object, both eyes will converge on the object. However, due to the horizontal separation, each eye will see a slightly different perspective of the object. This is known as horizontal disparity. Our brains have developed an ability to fuse images from both eyes together so that we don't see doubles (known as stereopsis). This disparity also allows our brain to infer depth.

The earliest stereograms were made from a pair of photographs, specially taken so that each of them captures a slight horizontal disparity. Stereoscopes were devices that present the correct image from these photographs to each eye using mirrors or prisms.

Anaglyph images are another popular stereogram technology. You may have seen such images in comic books or 3D movies. The image meant for the left eye is printed in red while the image meant for the right eye is superimposed over the red image using cyan. Anaglyph images look to the naked eye quite like what you will see when you experience double-vision. However, special "anaglyph glasses" which filter red images to one eye and cyan images to the other can be used to provide the appropriate image to each eye.

Figure 5 is an example of an anaglyph; keep your 3D anaglyph glasses within reach!
The stereograms that we are more interested about are the same ones popularized by the "Magic Eye" series of books which have fascinated many (Have you seen them?). These stereograms are known as autostereograms or Single Image Stereograms (SIS) because all of the depth information in the stereogram is contained within one image, in contrast to the pairs of images (stereo pairs) used by earlier methods. Figure 9 at the end of this appendix shows a sample autostereogram. This is the same kind of stereograms generated in this problem set. (If you can't read the stereogram, the next section will help you with that.)
So, how do autostereograms work? We treat the stereogram as points of projection from the 3D object onto an image plane situated between the object and the eyes, as shown in figure 6. Since points A and C are projected from the same point on the object (to different eyes), they should have the same color. Similarly, points B and D should have the same color too. Note that by the same reasoning, point E must have the same color as point C and thus, A, B, and E must have the same color. If we continue this process for the whole image plane, we eventually get groups of points that are constrained to have the same color. We can then either allocate colors randomly (and get a stereogram similar to that in figure 9) or allocate colors that show some pattern or image.

[^0]An important note that applies to all stereogram generation methods is that we need only work with one scan line at a time. A scan line is a line on the image plane that is horizontal with respect to the two eyes (figure 7). This is because all pairs of projected points (from the same point on the object) form line segments that are parallel to LR, the line segment between the two eyes.

Let's dive into the more technical aspect. As this is a 3-D modeling, we need coordinates x, y and z. Let x run horizontally from the left eye to the right eye and y run vertically downwards. Both x and y are parallel to the image plane (figure 7). z runs perpendicularly to the image plane. It is zero on the image plane, positive between the eyes and the image plane, and negative behind the image plane.

We can introduce major simplification to this model. We shall assume that the eyes look "straight" at every point in the stereogram (figure 8. The rationale is that the viewer may not have any preference for viewing positions, hence we shall choose one that is most reasonable. This model also comes in handy when doing visibility tracing.
By similar triangles, separation of two points constrained to be the same color,

$$
s=-\frac{z E}{D-z}=\frac{z E}{z-D}
$$

This separation s is called the stereo separation, and it is an important value that we will use in all stereogram generation algorithms.

Given the value z of a particular point on a 3D object, we can calculate the stereo separation and find the two points which must be constrained to having the same color on the stereogram image (figure 8. Now, a 3D object can be described by a function $f(x, y)$ that returns the z value at point (x, y). This function is sometimes referred to as z-function. Similarly, a 2D greyscale image can be used as a graphical representation of a z-function. Such images are known as depth maps. The lightness or darkness of each point on the depth map represents its depth in 3D. In the problem set, we learn that quilts can be interpreted as depth maps.

The basic theory behind stereogram creation is very simple, it is a problem of finding groups of points which are constrained to have the same color. In our algorithm, we simply allocate random colors to each group of constrained points, thus earning it the name: Single Image Random Dot Stereograms (SIRDS).

How to view stereograms

Two mechanisms are in play to help us see the world around us: first, our eyes roll inwards towards each other so that each eye points towards the same object (convergence); second, our eyes' lenses adjust to get a clear image (focus). The trick to viewing stereograms lies in decoupling these two mechanisms so that our eyes converge at a point behind the stereogram picture. The eyes should be looking almost in parallel at the picture, but at the same time focused on the picture. This way of viewing stereograms is known as wall-eyed viewing.

One way to view stereograms is to imagine that you are looking at an object some distance behind the stereogram. It feels somewhat like looking at your reflection in the mirror. When you are looking at your reflection, your eyes actually converge at a point behind the glass pane. If you switched between looking at the glass pane itself to looking at your reflection, then you should have gotten a sense of how it feels like to look at an object behind the stereogram. If you can do this, you will see double after some time because your eyes are looking at different places in the
picture. Hopefully your brain will put two and two together and voilà! you will see a beautiful 3D object.

Another popular way to view stereograms is to bring the picture close to your face. It's best to bury your nose into the picture. At such a close distance, your eyes give up on trying to converge upon an object and roll back into wall-eyed viewing positions, just like if you were looking at an object extremely far away. Now, slowly pull the picture away from your face, or your face away from the picture, but keep the same relaxed sensation in your eyes so that you see double. At some point, you will see your stereogram.
It is not natural for us to view stereograms because decoupling focus from convergence goes against our instincts and serves no useful purpose in daily life. Early humans could ill afford to decouple convergence from focus by mistake just when they were chasing their dinner or running away from a lion!

However, it is not that hard to view stereograms too-it just takes a little bit of practice, like learning how to swim or how a ride a bicycle. Remember to try easy, not hard; viewing stereograms does not involve straining your eyes. Don't worry if it does not come to you naturally-you do not need to be able to view stereograms to do the problem set.

Now, try to view the sample stereogram in figure 9.

Figure 5: A sample anaglyph. When viewed with Red Cyan 3D anaglyph glasses, you will see a heart floating above a circle.

Figure 6: Points of projection from a $3 D$ object.

Figure 7: $A B$ and $B C$ are parallel to left-right eyes.

Figure 8: Simplified model: viewer views "straight" at every point on the object.

Figure 9: A sample stereogram. When viewed with correct technique, a nova_bb appears to "pop out".

[^0]: ${ }^{1}$ Didn't I tell you earlier, even some of the teaching staffs don't know how to read one!

