CS1101S, Semester I, 2012/2013—Mission 3 1

National University of Singapore
School of Computing
CS1101S: Programming Methodology (JavaScript)
Semester I, 2012/2013

Mission 3
Beyond the Second Dimension

Start date: 23 August 2012
Due: 28 August 2012, 23:59

Readings:
e Textbook Sections 1.1.1 to 1.1.4

After passing through the three doors in your previous mission, you arrive in a large spacious
hall with no visible exits except for a large hole in the ceiling from which a bright light illuminates
the entire hall. In one corner, you find a raised terminal with an interface similar to the empty
spaces you found on the doors.

In this third mission, you are expected to think spatially and show acute sense of perception. This
will prove that you are able to look at problems from different angles and choose the appropriate
line of attack.

Note: Before you start on this mission, you may want to read the background reading (see
Appendix).

Runes (see previous mission) can be used as representations of 3D scenes. Instead of simple
flat runes, the runes can possess surface components of varying depth — also known as depth
maps. In this mission, darker areas are closer to you while lighter areas are further away. The
following diagram illustrates how such runes - or depth maps — are interpreted. You can imagine
the nova_bb as a pattern floating on the background:

Now, observe a slightly more complicated depth map and its isometric projection. The follow-
ing depth map shows the nova_bb rune in black (darker) and hence is closer to you than the
rcr oss_bb rune in light grey.

CS1101S, Semester I, 2012/2013—Mission 3 2

The next one shows the isometric projection of the npsai ¢ rune from Mission 2.

Now that you are familiar with interpreting runes as depth maps, try generating your first stere-
ogram, anaglyph or hollusion. Here, a stereogram refers to a Single Image Random Dot Stere-
ogram (SIRDS) - an image that possesses 3D information that allows you to view the 3D object
by use of the wall-eyed vision technique (htt p://en. wi ki pedi a. or g/ wi ki / Aut ost er eogr an#
Vi ewi ng_t echni ques). On the other hand, if you have difficulty viewing autostereograms,
anaglyphs would be an easier option. Anaglyphs provide 3D stereoscopic view of 3D objects with
the use of coloured lenses. In our case, you should use a Red-Cyan anaglyph glass (htt p:// en.
wi ki pedi a. or g/ wi ki / Anagl yph_gl asses). Alternatively, you may try using hollusions, which
are an implementation of wiggle stereoscopy, as a simple way of viewing stereograms.

Use the command st er eogr am anagl yph or hol | usi on instead of showto generate stereograms
or anaglyphs instead of depth maps. For example, to generate the stereogram for nova_bb, we
can use the following command:

st er eogr an{ nova_bb);

You can then start practicing with the runes you generated previously and convert them to stere-
ograms or anaglyphs. Just remember to use st ereogran(.), anagl yph(.) or hol [usion(.)
instead of show(.). Now is a good time to take a break and enjoy viewing your wonderful cre-
ations.

http://en.wikipedia.org/wiki/Autostereogram#Viewing_techniques
http://en.wikipedia.org/wiki/Autostereogram#Viewing_techniques
http://en.wikipedia.org/wiki/Anaglyph_glasses
http://en.wikipedia.org/wiki/Anaglyph_glasses

CS1101S, Semester I, 2012/2013—Mission 3 3

Creating Overlays

It’s nice to be able to generate and view stereograms or anaglyphs, but knowing how to interpret
depth maps is not enough to do this exercise. We shall now introduce several more transforma-
tion primitives that we have written for your usage. They are: over| ay, overl ay_frac, scal e,
scal e.i ndependent, and transl ate.

The combinators overl ay and overl ay_frac will help you create depth maps easily. These
functions overlay two painters, one on top of the other. With over| ay, each painter will occupy
half of the depth range of the resulting depth map. Figure [Il provides two examples of depth
maps produced by overlaying two painters.

(a) show(overlay(sail-bb, rcross_bb));

(b) show(overlay(blank_bb, heart_bb));

Figure 1: Examples of depth maps laid out using over | ay command. Note that the depth space is divided
equally between the two runes. In (b), notice that the first rune (occupying the top-most layer) is a blank rune
bl ank_bb.

To make things more interesting, consider the possibilities should you nest the over| ay com-
mand. It works analogously to st ack command introduced in lecture. overl ay squeezes the
original depth range occupied by each of the runes by half. For example, doing this:

overl ay(overl ay(nova_bb, heart_bb), rcross_bb)

will result in the creation of the following depth map:

CS1101S, Semester I, 2012/2013—Mission 3 4

(Hint: use show(over| ay(overl ay(nova.bb, heart _bb), rcross_bb)); to display it.)

The first rune, which is an overlay of nova_bb and heart _bb, is squeezed by half and occupy the
top half of the depth range. The second rune, r cr 0ss_bb, occupies the bottom half.

The combinator over | ay_f r ac performs similarly as over | ay. However, we may also specify the
fraction of the total depth range occupied by each rune. This parameter determines the fraction
of the depth range occupies by the first rune; the remainder of the depth range will be occupied
by the second rune. In the following example, cor ner _bb takes up the top 1/4 of the depth
range, while heart _bb occupies the remainder 3/4. (These two combinators are so similar that
we actually implement one in term of the other. Can you guess which one is implemented in
term of which one?

Figure 2: show(overl ay frac(1/4, corner_bb, heart_bb));

We have also defined scal e and scal e_i ndependent . The former scales the rune according to
the ratio argument, the latter allows greater flexibility as you are able to pass two ratio argu-
ments, one for the horizontal scaling while another is for vertical scaling.

The last transformation tool we have is t r ansl at e. The function translates the given rune by
the given translation vector (z,y) where x and y are ratios of a 600x600 viewport centred in the
middle of the viewport (the actual size of the viewport is actually 800x600 so you will find that
when a rune is translated by 1 in the z-axis, it will still be visible whereas it will not when it is
translated by 1 in the y-axis.) Note that positive + means translating to the right, while positive y
means translating down.

CS1101S, Semester I, 2012/2013—Mission 3 5

(a) show(scale(1/2, heart_bb)); (b) show(scale_independent(3/4, 1/3,
heart_bb));

Figure 3: Examples of scal e and scal e_i ndependent . In (a), heart _bb is scaled by 1/2 both horizontally
and vertically. In (b), it is scaled by 3/4 horizontally and 1/3 vertically.

Figure 4: Example of a translated heart_bb. This is the result of show(translate(0.1, O0.15,
heart _bb));

Try creating an anaglyph with the following command and view them with the 3D anaglyph
glasses that was issued:

anagl yph(overl ay(scal e(0.8, heart_bb), circle_bb));

CS1101S, Semester I, 2012/2013—Mission 3 6

This mission has two tasks.

Task 1:

Displayed prominently on the wall beside the terminal is are basic runes and a complex 3D rune
of you are expected to conjure.

Write a function st eps that takes four runes as arguments and arranges them in a 2 x 2 square,
starting with the top-right corner, going clockwise, just like nosai ¢ in Mission 2. However, the
four runes are now placed at different depths as shown in the following example:

steps(rcross_bb, sail _bb, corner_bb, nova_bb)

will result in the following depth map:

Note that the r cr oss_bb is at the lowest level (lightest shade of grey) and nova_bb is at the highest
level (black). Also, note that the four runes are spaced equally apart along the z-axis. Hint: You
may want to make use of the blank painter bl ank_bb and/or reuse a function that you have
defined previously.

Task Files

e lib/list.js

lib/misc.js

lib/graphics.js

lib/runes.js

mission_3_1.html

e mission_3_1.js

CS1101S, Semester I, 2012/2013—Mission 3 7

Task 2:

As you successfully entered the correct instruction into the terminal, massive stones begin to
levitate from the center of the hall. By the time the ground stopped shaking, what you behold
was a gigantic monolithic structure that was represented in the 3D rune — a 4 step stair like
structure that allows you to ascend into the level above the hall.

In the space above, you encounter a similar hall, only this time, the 3D rune you are expected
to materialize is different. With some creativity, and the use of the overl ay_frac and scal e
commands, you will need to create your next 3D structure.

Implement the function t ree that takes as arguments a number of slices n and a rune and
generates a stack of runes scaled and overlayed on top of each other.

For example, the following command

tree(4, circle_bb)

should produce the following depth map:

The generated tree must satisfy a few properties: the ci rcl e_bb at the top of the tree is scaled
to 1/4 of its original size (the tree has 4 layers); the next lower layer is scaled by 2/4, and so on.
Note that the bottom-most layer retains its original size. The different levels of the tree must also
be spaced evenly apart.

Task Files

e lib/list.js

e lib/misc.js

e lib/graphics.js

e lib/runes.js

e mission_3_2.html

e mission_3_2.js

CS1101S, Semester I, 2012/2013—Mission 3 8

Submission

To submit your work to the Academy, copy the contents from the template file(s) into the box that
says "Your submission” on the mission page, click "Save Code”, then click "Finalize Submission”.
Note that submission is final and that any mistakes in submission requires extra effort from a
tutor or the lecturer himself to fix.

Appendix: Background Reading on Stereograms

Here we provide some background information on how stereograms work and how they are
generated. This material is purely for your reading pleasure. You do not have to understand how
stereograms are generated (or read)) to complete the problem set. Read on if you're interested!

First, we need to understand how our eyes work to give us stereovision. We are able to see depth
because we have two eyes that are spaced a distance apart. When we look at an object, both
eyes will converge on the object. However, due to the horizontal separation, each eye will see a
slightly different perspective of the object. This is known as horizontal disparity. Our brains have
developed an ability to fuse images from both eyes together so that we don’t see doubles (known
as stereopsis). This disparity also allows our brain to infer depth.

The earliest stereograms were made from a pair of photographs, specially taken so that each of
them captures a slight horizontal disparity. Stereoscopes were devices that present the correct
image from these photographs to each eye using mirrors or prisms.

Anaglyph images are another popular stereogram technology. You may have seen such images
in comic books or 3D movies. The image meant for the left eye is printed in red while the image
meant for the right eye is superimposed over the red image using cyan. Anaglyph images look to
the naked eye quite like what you will see when you experience double-vision. However, special
“anaglyph glasses” which filter red images to one eye and cyan images to the other can be used
to provide the appropriate image to each eye.

Figure [Blis an example of an anaglyph; keep your 3D anaglyph glasses within reach!

The stereograms that we are more interested about are the same ones popularized by the “Magic
Eye” series of books which have fascinated many (Have you seen them?). These stereograms are
known as autostereograms or Single Image Stereograms (SIS) because all of the depth informa-
tion in the stereogram is contained within one image, in contrast to the pairs of images (stereo
pairs) used by earlier methods. Figure [9 at the end of this appendix shows a sample autostere-
ogram. This is the same kind of stereograms generated in this problem set. (If you can’t read the
stereogram, the next section will help you with that.)

So, how do autostereograms work? We treat the stereogram as points of projection from the 3D
object onto an image plane situated between the object and the eyes, as shown in figure[6l Since
points A and C are projected from the same point on the object (to different eyes), they should
have the same color. Similarly, points B and D should have the same color too. Note that by the
same reasoning, point E must have the same color as point C and thus, A, B, and E must have
the same color. If we continue this process for the whole image plane, we eventually get groups of
points that are constrained to have the same color. We can then either allocate colors randomly
(and get a stereogram similar to that in figure [9) or allocate colors that show some pattern or
image.

IDidn’t I tell you earlier, even some of the teaching staffs don’t know how to read one!

CS1101S, Semester I, 2012/2013—Mission 3 9

An important note that applies to all stereogram generation methods is that we need only work
with one scan line at a time. A scan line is a line on the image plane that is horizontal with
respect to the two eyes (figure [7). This is because all pairs of projected points (from the same
point on the object) form line segments that are parallel to LR, the line segment between the two
eyes.

Let’s dive into the more technical aspect. As this is a 3-D modeling, we need coordinates z, y and
z. Let x run horizontally from the left eye to the right eye and y run vertically downwards. Both
z and y are parallel to the image plane (figure [7). z runs perpendicularly to the image plane. It
is zero on the image plane, positive between the eyes and the image plane, and negative behind
the image plane.

We can introduce major simplification to this model. We shall assume that the eyes look “straight”
at every point in the stereogram (figure [8). The rationale is that the viewer may not have any
preference for viewing positions, hence we shall choose one that is most reasonable. This model
also comes in handy when doing visibility tracing.

By similar triangles, separation of two points constrained to be the same color,
zE zE

S:_D—z:sz

This separation s is called the stereo separation, and it is an important value that we will use in
all stereogram generation algorithms.

Given the value z of a particular point on a 3D object, we can calculate the stereo separation
and find the two points which must be constrained to having the same color on the stereogram
image (figure[8). Now, a 3D object can be described by a function f(x,y) that returns the > value
at point (z,y). This function is sometimes referred to as z-function. Similarly, a 2D greyscale
image can be used as a graphical representation of a z-function. Such images are known as
depth maps. The lightness or darkness of each point on the depth map represents its depth in
3D. In the problem set, we learn that quilts can be interpreted as depth maps.

The basic theory behind stereogram creation is very simple, it is a problem of finding groups of
points which are constrained to have the same color. In our algorithm, we simply allocate random
colors to each group of constrained points, thus earning it the name: Single Image Random Dot
Stereograms (SIRDS).

How to view stereograms

Two mechanisms are in play to help us see the world around us: first, our eyes roll inwards
towards each other so that each eye points towards the same object (convergence); second, our
eyes’ lenses adjust to get a clear image (focus). The trick to viewing stereograms lies in decoupling
these two mechanisms so that our eyes converge at a point behind the stereogram picture. The
eyes should be looking almost in parallel at the picture, but at the same time focused on the
picture. This way of viewing stereograms is known as wall-eyed viewing.

One way to view stereograms is to imagine that you are looking at an object some distance
behind the stereogram. It feels somewhat like looking at your reflection in the mirror. When you
are looking at your reflection, your eyes actually converge at a point behind the glass pane. If you
switched between looking at the glass pane itself to looking at your reflection, then you should
have gotten a sense of how it feels like to look at an object behind the stereogram. If you can do
this, you will see double after some time because your eyes are looking at different places in the

CS1101S, Semester I, 2012/2013—Mission 3 10

picture. Hopefully your brain will put two and two together and voila! you will see a beautiful 3D
object.

Another popular way to view stereograms is to bring the picture close to your face. It’s best to
bury your nose into the picture. At such a close distance, your eyes give up on trying to converge
upon an object and roll back into wall-eyed viewing positions, just like if you were looking at an
object extremely far away. Now, slowly pull the picture away from your face, or your face away
from the picture, but keep the same relaxed sensation in your eyes so that you see double. At
some point, you will see your stereogram.

It is not natural for us to view stereograms because decoupling focus from convergence goes
against our instincts and serves no useful purpose in daily life. Early humans could ill afford to
decouple convergence from focus by mistake just when they were chasing their dinner or running
away from a lion!

However, it is not that hard to view stereograms too—it just takes a little bit of practice, like learn-
ing how to swim or how a ride a bicycle. Remember to try easy, not hard; viewing stereograms
does not involve straining your eyes. Don’t worry if it does not come to you naturally—you do
not need to be able to view stereograms to do the problem set.

Now, try to view the sample stereogram in figure

CS1101S, Semester I, 2012/2013—Mission 3 11

Figure 5: A sample anaglyph. When viewed with Red Cyan 3D anaglyph glasses, you will see a heart
floating above a circle.

left-right eyes

7: AB and BC are parallel to

N

CS1101S, Semester I, 2012/2013—Mission 3 14

Figure 9: A sample stereogram. When viewed with correct technique, a nova_bb appears to “pop out”.

	Creating Overlays
	Task Files
	Task Files
	Submission
	Appendix: Background Reading on Stereograms
	How to view stereograms

