
CS1101S, Semester I, 2012/2013—Mission 4 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Mission 4

Curve Introduction

Start date: 27 August 2012
Due: 01 September 2012, 23:59

Readings:

• Textbook Sections 1.1.5 to 1.1.8

Coming out on top of the JFDI contest, you have thoroughly impressed and convinced the grand-
master to impart you the ways of JFDI.

He has decided to teach all chosen ones a fundamental skill of the JFDI, using the Force to ma-
nipulate curves. Such training would ensure that you can master the Force for other important
missions.

The grandmaster waves to the disciples as he ascends the stage. He introduces himself as
Grandmaster Martin and begins to give a preparatory speech for the disciples.

“Welcome my disciples. I am impressed by your intelligence as I watched you solve the challeng-
ing problems of the rune doors and mosaic. However these are just mere basics of the way of the
Force. To be a proper disciple of the JFDI, first you must learn how to master the techniques of
the Force. It will not be an easy feat. But I will start from scratch and teach you the basics of the
Force before you go on to mastering the technique.

I will introduce to you some mind training. You will begin to think of nothing first. Then slowly,
start picturing a curve being drawn from one end to another. You will feel your mind strength-
ening as it codes out the shape of the curve...”

Drawing Curves

A curve is a basic drawing element. Complex pictures can be obtained by drawing multiple
curves. A curve is a unary function which takes one real argument within the unit interval [0, 1]
and returns a point (a pair of reals). Intuitively, the real argument can be thought of as the time,
and the point returned by the curve can be thought of as the position of the pen at the time
indicated by the argument. In JavaScript, we let Unit-Interval be the type of JS-Nums between 0
and 1, and we represent curves by functions of JavaScript type Curve, where

Curve : Unit-Interval → Point

and Point is some representation of pairs of JS-Num’s. If C is a curve, then the starting point of
the curve is always C(0), and the ending point is always C(1).



CS1101S, Semester I, 2012/2013—Mission 4 2

To work with Point, we need a constructor, make point, which constructs Points from JS-Nums,
and selectors, x of and y of, for getting the x and y coordinates of a Point. We require only that
the constructors and selectors obey the rules

x of (make point (n,m)) = n

y of (make point (n,m)) = m

for all JS-Num’s m,n. Here is one way to do this:

function make_point(x, y){ return pair(x, y); }

function x_of(point){ return head(point); }

function y_of(point){ return tail(point); }

make point : (JS-Num,JS-Num) → Point,

x of,y of : (Point) → JS-Num.

For example, we can define the Curve unit circle and the Curve unit line (along the x axis):

function unit_circle(t){
return make_point(Math.sin(2 * Math.PI * t),

Math.cos(2 * Math.PI * t));
}

function unit_line_at(y){
return function(t){

return make_point(t, y);
}

}

var unit_line = unit_line_at(0);

Drawing Functions

In the previous section we introduced the concept of curve as the basic drawing unit. However, in
order to actually draw a curve on the window, you will need a drawing function. It is not required
that you understand the implementation of the drawing functions, but you should know how to
use them in order to visualize and test your solution.

When you launch any of the HTML files provided for this mission in a browser, they will load
hi graph.js. An empty viewport should be displayed.

In the Web Console type

draw_connected(200)(unit_circle);
draw_connected_squeezed_to_window(200)(unit_circle);



CS1101S, Semester I, 2012/2013—Mission 4 3

Note that after you have typed each line you will get a response of ”done”. After the first draw
statement, you will see a quarter circle while after the second, you will see a full circle. Note that
all Curve functions accepted by the draw methods are of the form defined above:

Curve : Unit-Interval → Point

The 200 in draw connected refers to the number of points to draw in this screen. Since 1/200
= 0.005, unit-circle will be called for values of t = 0, 0.005, 0.01, 0.015, 0.02, etc. until t
= 1. draw connected will then join two adjacent points returned by unit circle to draw a
connected Curve. If you want to draw the points without connecting them, use draw points on.
The following is an example on using draw points on:

draw_points_on(200)(unit_circle);

Note that the origin of the drawing window is at the bottom left. Moving right along the drawing
window increases the value of the x-axis until the x-coordinate equals 1. Likewise moving up
along the window increases the value of the y-axis until the y-coordinate equals 1. This is why
draw connected shows only a quadrant of the unit circle; since for some values of t, the x
and y-coordinates are outside the range [0, 1]. For example, try:

unit_circle(0.5);

The y-coordinate of -1.0 is outside the range [0, 1] and hence cannot be displayed. Another
function, draw connected squeezed to window, takes care of this by scaling and translating
the Curve as required so that all points fall in the range [0, 1] for both axes.

More on Drawing Curves

Now that we have learnt the basics on how to draw the curve on the window, Grandmaster Martin
would like us to get even more familiarised with the drawing of curves. Apart from the drawing
functions that you have been shown above, there are others you can use to draw curves. The
following is a list of the drawing functions available for use:

1. draw points on,

2. draw connected,

3. draw points squeezed to window,

4. draw connected squeezed to window and

5. draw connected full view

The differences between these functions are suggested by their names. The way to call these
functions are the same. For example, to draw the pre-defined curve unit circle on the window
using 200 points, you may call

draw points on(200)(unit circle);

In order to draw a connected curve, you may use



CS1101S, Semester I, 2012/2013—Mission 4 4

draw connected(200)(unit circle);

If you want to make the curve fit in the current window, you may use

draw connected squeezed to window(200)(unit circle);

Note that the more points you use, the more accurately the curve will be drawn.



CS1101S, Semester I, 2012/2013—Mission 4 5

This mission has two tasks.

Task 1:

Recall the definition of unit line at:

function unit_line_at(y){
return function(t){

return make_point(t, y);
}

}

(a) What is the type of unit line at?
Hint: The format for expressing a type and an example is shown below:

<proc> : (<para-type>[, ...]) → <output-type>

make point : (JS-Num,JS-Num) → Point

(b) Define a function vertical line with two arguments, a point and a length, that returns
a vertical line of that length beginning at the point. Note that the line should be drawn
upwards (i.e., towards the positive-y direction) from the point.

(c) What is the type of vertical line?

(d) Using draw connected and your function vertical line with suitable arguments, draw
a vertical line in the window which is centered and has half the length of the sides of the
window.

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/hi graph.js

• mission 4 1.html

• mission 4 1.js

Task 2:

Apply draw connected(200) to unit circle, i.e.

draw_connected(200)(unit_circle);



CS1101S, Semester I, 2012/2013—Mission 4 6

Then apply draw connected(200) to alternative unit circle. Can you see a difference? Now
try using draw points on instead of draw connected.

Also try draw points squeezed to window.

Use appropriate drawing functions to draw unit circle and alternative unit circle. Write down
the difference between unit circle and alternative unit circle. You should also point out why
this difference exists by examining the code of both unit circle and alternative unit circle in
hi graph.js.

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/hi graph.js

• mission 4 2.html

• mission 4 2.js

Submission

To submit your work to the Academy, copy the contents from the template file(s) into the box that
says ”Your submission” on the mission page, click ”Save Code”, then click ”Finalize Submission”.
Note that submission is final and that any mistakes in submission requires extra effort from a
tutor or the lecturer himself to fix.


	Drawing Curves
	Drawing Functions

	More on Drawing Curves
	Task Files
	Task Files

	Submission

