
CS1101S, Semester I, 2012/2013—Mission 6 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology (JavaScript)

Semester I, 2012/2013

Mission 6

Gosperize

Start date: 01 September 2012
Due: 05 September 2012, 23:59

Readings:

• Textbook Sections 1.3.2

Background:

After days of training, the disciples are now able to freely conjure up curves. However, simple
curves are not effective in warding of Force attacks.

Grandmaster Martin explains that there is an interesting way to make the curves much more
formidable. Through Gosperization, images of these curves can be multiplied to greatly increase
the strength of defence. However, he cautions that the process of Gosperization should be done
quickly, so as not to waste the efficiency of the mind.

“Good. The technique of Force comes in many forms, not just from a single source. Now multiply
your image in your head, with the images coming in from different angles. Make sure the images
come quickly into your mind...”

This mission has three tasks.

Task 1:

To show off the power of our drawing language, let’s use it to explore fractal curves. Fractals
have striking mathematical properties1. Fractals have received a lot of attention over the past few
years, partly because they tend to arise in the theory of nonlinear differential equations, but also
because they are pretty, and their finite approximations can be easily generated with recursive
computer programs.

For example, Bill Gosper2 discovered that the infinite repetition of a very simple process creates
a rather beautiful image, now called the Gosper C Curve. At each step of this process there is an

1A fractal curve is a “curve” which, if you expand any small piece of it, you get something similar to the original. The
Gosper curve, for example, is neither a true 1-dimensional curve, nor a 2-dimensional region of the plane, but rather
something in between.

2Bill Gosper is a mathematician now living in California. He was one of the original hackers who worked for Marvin
Minsky in the MIT Artificial Intelligence Laboratory during the ’60s. He is perhaps best known for his work on the Conway
Game of Life—a set of rules for evolving cellular automata. Gosper invented the “glider gun”, resolving Conway’s question
as to whether it is possible to produce a finite pattern that evolves into an unlimited number of live cells. He used this
result to prove that the Game of Life is Turing universal, in that it can be used to simulate any other computational
process!



CS1101S, Semester I, 2012/2013—Mission 6 2

approximation to the Gosper curve. The next approximation is obtained by adjoining two scaled
copies of the current approximation, each rotated by 45 degrees.

Figure 1 shows the first few approximations to the Gosper curve, where we stop after a certain
number of levels: a level-0 curve is simply a straight line; a level-1 curve consists of two level-0
curves; a level 2 curve consists of two level-1 curves, and so on. The figure also illustrates a
recursive strategy for making the next level of approximation: a level-n curve is made from two
level-(n − 1) curves, each scaled to be

√
2/2 times the length of the original curve. One of the

component curves is rotated by π/4 (45 degrees) and the other is rotated by −π/4. After each
piece is scaled and rotated, it must be translated so that the ending point of the first piece is
continuous with the starting point of the second piece.

We assume that the approximation we are given to improve (named curve in the function) is in
standard position. By doing some geometry, you can figure out that the second curve, after being
scaled and rotated, must be translated right by .5 and up by .5, so its beginning coincides with
the endpoint of the rotated, scaled first curve.

This leads to the Curve-Transform gosperize:

function gosperize(curve){
var scaled_curve = scale(Math.sqrt(2) / 2)(curve);
return connect_rigidly(rotate_around_origin(Math.PI / 4)(scaled_curve),

translate(0.5, 0.5)
(rotate_around_origin(-Math.PI / 4)(scaled_curve)));

}

Now we can generate approximations at any level to the Gosper curve by repeatedly gosperizing
the unit line,

function gosper_curve(level){
return repeated(gosperize, level)(unit_line);

}

To look at the level level gosper curve, evaluate show connected gosper(level):

function show_connected_gosper(level){
draw_connected(200)

(squeeze_rectangular_portion(-0.5, 1.5, -0.5, 1.5)
(gosper_curve(level)));

}

Your Task:

Define a function show points gosper such that evaluation of

show_points_gosper(level, number_of_points, initial_curve);

will plot number of points unconnected points of the level level gosper curve, but starting
the gosper curve approximation with an arbitrary initial curve rather than the unit line. For
instance,

show_points_gosper(level, 200, unit_line);

should display the same points as show connected gosper(level), but without connecting
them. But you should also be able to use your function with arbitrary curves. (You can find the
description of the function squeeze rectangular portion in the file hi graph ce.js; you don’t
need to understand it in detail to do this task.)



CS1101S, Semester I, 2012/2013—Mission 6 3

Test your code by gosperizing the arc of the unit circle running from 0 to π. Find some examples
that produce interesting designs (You may also want to change the scale in the plotting window
and the density of points plotted)3. Some sample tests are given in Figure 2.

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/hi graph ce.js

• mission 6 1.html

• mission 6 1.js

Task 2:

The Gosper fractals we have been playing with have had the angle of rotation fixed at 45 degrees.
This angle need not be fixed. It need not even be the same for every step of the process. Many
interesting shapes can be created by changing the angle from step to step.

We can define a function param gosper that generates Gosper curves with changing angles. This
function takes a level number (the number of levels to repeat the process) and a second argument
called angle at. The function angle at should take one argument, the level number, and return
an angle (measured in radians) as its answer:

angle-at : JS-Nonneg-Int → JS-Num.

The function param gosper can use this to calculate the angle to be used at each step of the
recursion.

function param_gosper(level, angle_at){
if(level === 0){

return unit_line;
}else{

return param_gosperize(angle_at(level))(param_gosper(level - 1, angle_at));
}

}

The function param gosperize is almost like gosperize, except that it takes an another argu-
ment, the angle of rotation:

3One of the things you should notice is that, for larger values of n, all of these curves look pretty much the same.
As with many fractal curves, the shape of the Gosper curve is determined by the Gosper process itself, rather than the
particular shape we use as a starting point. In a sense that can be made mathematically precise, the “infinite level”
Gosper curve is a fixed point of the Gosper process, and repeated applications of the process will converge to this fixed
point.



CS1101S, Semester I, 2012/2013—Mission 6 4

function param_gosperize(theta){
return function(curve){

var scale_factor = 1 / Math.cos(theta) / 2;
var scaled_curve = scale(scale_factor)(curve);
return connect_rigidly(rotate_around_origin(theta)(scaled_curve),

translate(0.5, Math.sin(theta) * scale_factor)
(rotate_around_origin(-theta)(scaled_curve)));

}
}

For example, the ordinary Gosper curve at level level is returned by

param_gosper(level, function(level){ return Math.PI/4; })

Designing param gosperize required using some elementary trigonometry to figure out how to
shift the pieces around so that they fit together after scaling and rotating. It’s easier to program
if we let the computer figure out how to do the shifting.

One convenient Curve-Transform is rotate around origin. Basically,

function rotate_around_origin(theta)(arg_curve)

will return a curve obtained by rotating arg curve around the origin for an angle of theta.

Another convenient Curve-Transform is put in standard position. We’ll say a curve is in stan-

dard position if its start and end points are the same as the unit line, namely it starts at the origin
(0, 0), and ends at the point (1, 0). We can put any curve whose start and endpoints are not the
same into standard position by rigidly translating it so its starting point is at the origin, then
rotating it about the origin to put its endpoint on the x axis, then scaling it to put the endpoint
at (1, 0):

function put_in_standard_position(curve){
var start_point = curve(0);
var curve_started_at_origin = translate(-x_of(start_point),

-y_of(start_point))(curve);
var new_end_point = curve_started_at_origin(1);
var theta = Math.atan(y_of(new_end_point), x_of(new_end_point));
var curve_ended_at_x_axis = rotate_around_origin(-theta)

(curve_started_at_origin);
var end_point_on_x_axis = x_of(curve_ended_at_x_axis(1));
return scale(1 / end_point_on_x_axis)(curve_ended_at_x_axis);

}

Your Task:

Show how to redefine param gosperize using the functions put in standard position and
connect ends to handle the trigonometry 4. In order to avoid naming conflicts, you will be using
the function name your param gosperize instead of the original param gosperize.

Your definition should be of the form

function your_param_gosperize(theta){
return function(curve){

return put_in_standard_position(connect_ends(...,
...));

}
}

4your param gosperize must give the same output as the definition of param gosperize above.



CS1101S, Semester I, 2012/2013—Mission 6 5

To test your code, generate some parameterized Gosper curves where the angle changes
with the level n. The function your param gosper has been defined for you and it uses
your param gosperize for the purpose of testing. Sample answers are shown in Figure 3.

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/hi graph ce.js

• mission 6 2.html

• mission 6 2.js

Task 3:

We now have three functions to compute gosper curves:

• gosper curve
• param gosper with argument function(level){ return Math.PI / 4; } using the “hand-

crafted” definition of param gosperize above
• your param gosper in Task 2 that uses your param gosperize based on put in standard position.

The JavaScript Date object’s getTime function can be used to report the elapsed time in mil-
liseconds required to evaluate a series of statements. This function returns the POSIX time5

at the point when it is called. A Date object can constructed and queried for its POSIX time.
Another Date object can be constructed and queried again later, and the difference between the
two recorded times tells the elapsed time between the two statements.

For example, evaluating

var start = (new Date()).getTime();
gosper_curve(10000)(0.1);
var end = (new Date()).getTime();
console.log("Elapsed Time: " + (end - start));

will print out the time to compute the point at .1 on the level 10000 gosper curve. Be warned
that the resolution of getTime is not very high. The accuracy of any elapsed time values below
20 milliseconds is suspect.

Your Task:

Compare the time measurements of these functions for computing selected points on the curve
at a significant level. 6 Do this for at least 5 times to take the average time measurements for
each of the functions for more accurate results. Present your findings in a neat and organized
manner.

Use your results to conclude if there is a speed advantage for the more customized functions. 7

5POSIX time is a system based on the amount of milliseconds that have elapsed since January 1, 1970.
6Significant level refers to one that does not take a ridiculous amount of time to perform the function, but yet enough

to show the difference in time measurements between the different functions.
7A more customized function here refers to a function that delves in more details and have a lower level of abstraction.



CS1101S, Semester I, 2012/2013—Mission 6 6

Task Files

• lib/list.js

• lib/misc.js

• lib/graphics.js

• lib/hi graph ce.js

• mission 6 3.html

• mission 6 3.js

Submission

To submit your work to the Academy, copy the contents from the template file(s) into the box that
says ”Your submission” on the mission page, click ”Save Code”, then click ”Finalize Submission”.
Note that submission is final and that any mistakes in submission requires extra effort from a
tutor or the lecturer himself to fix.



CS1101S, Semester I, 2012/2013—Mission 6 7

show connected gosper(0); show connected gosper(1);

show connected gosper(2); show connected gosper(5);

Figure 1: Samples for Gosper Curve.



CS1101S, Semester I, 2012/2013—Mission 6 8

show points gosper(7, 1000, arc); show points gosper(5, 500, arc);

Figure 2: Sample Tests for Task 1.

draw connected(200)(your param gosper draw connected(200) (your param gosper
(10, function(n) return Math.PI / (n + 2); )); (5, function(n) return Math.PI / 4 / Math.pow(1.3, n); ));

Figure 3: Sample answers for Task 2.


	Background:
	Task Files
	Task Files
	Task Files

	Submission

