
CS1101S, Semester I, 2012/2013—Recitation 0 1

National University of Singapore
School of Computing

CS1101S: Programming Methodology (JavaScript)
Semester I, 2012/2013

Recitation 0

Functional Abstraction

JavaScript

1. When running in a browser, JavaScript has a function called alert predefined. This means
that the environment that JavaScript starts with already has a function associated with
the symbol alert. This function always returns the value undefined, the same value that
results from evaluating var statements and function definition statements. As a side-effect,
the function alert displays its argument in a pop-up window of the browser. Try

alert(100 + 200);

2. Conditional statements of the form

if (test1) {cons-stmt-1} else if (test2) {cons-stmt-2} else {alt-stmt;}

evaluate a series of tests in order. If the value of a test is not false, the corresponding
consequent is evaluated, otherwise the next test is evaluated. If a test is evaluated as true,
succeeding tests will not be evaluated. If all tests evaluate to false, the final alternative is
evaluated.

Example:

function sign(x) {
if (x < 0) {

return -1;
} else if (x > 0) {

return 1;
} else {

return 0;
}

}

3. Similarly, conditional expressions of the form

(test1) ? consequent-expr-1 : (test2) ? consequent-expr-2 : alterative-expr

evaluate a series of tests in order. If the value of a test is not false, the value of whole
conditional expression is the value corresponding consequent, otherwise the next test is
performed. If a test evaluates to true, succeeding tests will no longer be evaluated. If
all tests fail, the value of the whole conditional expression is the value of the remaining
alternative.

Example: The function above can be re-written as:

CS1101S, Semester I, 2012/2013—Recitation 0 2

function sign(x) {
return (x < 0) ?

-1 : (x > 0) ?
1 : 0;

}

Note that in JavaScript, there must not be any newline character between the return
keyword and the expression.

4. function - function(parameters){body}
Creates a function with the given parameters and body. Parameters is a comma-separated
sequence of names of variables. Body is one or more JavaScript statements. When the
function is applied, the body statements are evaluated in order. The function can return a
value to the caller using return, followed by an expression.

Firefox

1. Start the web console of Firefox using Tools → Web Developer → Web Console.

2. Play with the examples of Lecture 1.

3. Separate the lines of input in the console using 〈shift〉 〈return〉.

4. Do not feel discouraged when the console replies “undefined” after you enter a statement.
Verify that the environment has a value for a symbol by typing the symbol, followed by
〈return〉. If you get anything other than “ReferenceError:...is not defined, then the
environment has a value for the symbol.

Problems:

1. Evaluate the following statements, assuming x is bound to 3, and observe their effect:

if (true) { alert(1+1); } else { alert(17); } => 2

if (false) { alert(false); } else { alert(42); } => 42

if (x > 0) { alert(x); } else { alert(-x); } => 3

if (0) { alert(1); } else { alert(2); } => 2

if (x < 0) { alert(7); } else { alert(7); } => 7

if (true) { alert(1); }
else if(y < 1) { alert(false); }
else{ alert("wake up"); } => 1

2. Evaluate the following statements:

(function(x) { return x; }); => (function (x) {return x;})

(function(x) { return x; })(17); => 17

CS1101S, Semester I, 2012/2013—Recitation 0 3

(function(x, y) { return x; })(42, 17); => 42

(function(x, y) { return y; })(z, 3); => error

(function(x, y) { return x(y, 3); })((function(a, b) { return a + b; }), 14); => 17

3. Suppose we’re designing a point-of-sale and order-tracking system for a new burger joint.
It is a small joint and it only sells 4 options for combos: Classic Single Combo (hamburger
with one patty), Classic Double With Cheese Combo (2 patties), and Classic Triple with
Cheese Combo (3 patties), Avant-Garde Quadruple with Guacamole Combo (4 patties). We
shall encode these combos as 1, 2, 3, and 4 respectively. Each meal can be biggie-sized to
acquire a larger box of fries and drink. A biggie-sized combo is represented by 5, 6, 7, and
8 respectively, for combos 1, 2, 3, and 4 respectively.

(a) Write a function named biggie size which when given a regular combo returns a
biggie-sized version.
Answer:

function biggie_size(meal) { return meal + 4; }

(b) Write a function named unbiggie size which when given a biggie-sized combo returns
a non-biggie-sized version.
Answer:

function unbiggie_size(meal) { return meal - 4; }

(c) Write a function named is biggie size which when given a combo, returns true if the
combo has been biggie-sized and false otherwise.
Answer:

function is_biggie_size(meal) { return meal > 4; }

(d) Write a function named combo price which takes a combo and returns the price of the
combo. Each patty costs $1.17, and a biggie-sized version costs $.50 extra overall.
Answer:

function combo_price(meal) {
if(is_biggie_size(meal)) {

return 0.50 + (1.17 * unbiggie_size(meal));
} else {

return 1.17 * meal;
}

}

(e) An order is a collection of combos. We’l encode an order as each digit representing a
combo. For example, the order 237 represents a Double, Triple, and biggie-sized Triple.

Write a function named empty order which takes no arguments and returns an empty
order which is represented by 0.
Answer:

function empty_order() { return 0; }

(f) Write a function named add to order which takes an order and a combo and returns
a new order which contains the contents of the old order and the new combo. For
example, add to order(1, 2) -> 12.
Answer:

CS1101S, Semester I, 2012/2013—Recitation 0 4

function add_to_order(order, combo) {
return order * 10 + combo;

}

(g) Write a function named order size which takes an order and returns the number of
combos in the order. For example, order size(237) -> 3. You may find Math.floor
useful. This functions rounds its argument downwards to the nearest integer. Thus,
Math.floor(5.9) returns 5 and Math.floor(-4.1) returns -5.

Answer:

function order_size(order) {
if(order === empty_order()) {

return 0;
} else {

return 1 + order_size(Math.floor(order / 10));
}

}

(h) Write a function named order cost which takes an order and returns the total cost of
all the combos. In addition to Math.floor, you may find the modulo operator % useful.

Answer:

function order_cost(order) {
if(order === empty_order()) {

return 0;
} else {

return combo_price(order % 10) + order_cost(Math.floor(order / 10));
}

}

Notice that the solution is almost identical to order size. The only difference is that
instead of adding one for each combo we remove, we add the price of the combo. Note
also how we are using the function combo price which we defined earlier.

(i) Homework: Write a function named add orders which takes two orders and returns a
new order that is the combination of the two. For example, add orders(123, 234) ->
123234. Note that the order of the combos in the new order is not important as long as
the new order contains the correct combos. add orders(123, 234) -> 122334 would
also be acceptable.

(j) Homework 2: Write iterative versions of order size and order cost.

