National University of Singapore
 School of Computing
 CS1101S: Programming Methodology
 Semester I, 2013/2014

Recitation 2

Recursion \& Orders of Growth

Definitions

Theta (Θ) notation:

$$
f(n)=\Theta(g(n)) \rightarrow \text { There exist } k_{1}, k_{2}, n \text { s.t.: } k_{1} \cdot g(n) \leq f(n) \leq k_{2} \cdot g(n), \text { for } n>n_{0}
$$

Big-O notation:

$$
f(n)=O(g(n)) \rightarrow \text { There exist } k, n \text { s.t.: } f(n) \leq k \cdot g(n) \text {, for } n>n_{0}
$$

Adversarial approach: For you to show that $f(n)=\Theta(g(n))$, you pick k_{1}, k_{2}, and n_{0}, then I (the adversary) try to pick an n which doesn't satisfy $k_{1} \cdot g(n) \leq f(n) \leq k_{2} \cdot g(n)$.

Implications

Ignore constants. Ignore lower order terms. For a sum, take the larger term. For a product, multiply the two terms. Orders of growth are concerned with how the effort scales up as the size of the problem increases, rather than an exact measure of the cost.

Typical Orders of Growth

- $\Theta(1)$ - Constant growth. Simple, non-looping, non-decomposable operations have constant growth.
- $\Theta(\log n)$ - Logarithmic growth. At each iteration, the problem size is scaled down by a constant amount: (call-again (/ n c)).
- $\Theta(n)$ - Linear growth. At each iteration, the problem size is decremented by a constant amount: (call-again (- n c)).
- $\Theta(n \log n)$ - Nifty growth. Nice recursive solution to normally $\Theta\left(n^{2}\right)$ problem.
- $\Theta\left(n^{2}\right)$ - Quadratic growth. Computing correspondence between a set of n things, or doing something of cost n to all n things both result in quadratic growth.
- $\Theta\left(2^{n}\right)$ - Exponential growth. Really bad. Searching all possibilities usually results in exponential growth.

What's n ?

Order of growth is always in terms of the size of the problem. Without stating what the problem is, and what is considered primitive (what is being counted as a "unit of work" or "unit of space"), the order of growth doesn't have any meaning.

Problems:

1. Give order notation for the following:
(a) $5 n^{2}+n$
(b) $\sqrt{n}+n$
(c) $3^{n} n^{2}$
2. function fact (n) \{ if ($\mathrm{n}===0$) \{
return 1;
\} else \{
return n * fact $(\mathrm{n}-1)$; \}
\}
Running time? Space?
3. Write an iterative version of fact.
```
4. function find_e(n) {
        if(n === 0) {
        return 1;
        } else {
            return (1 / fact(n)) + find_e(n - 1);
        }
}
```

Running time?
Space?
5. Assume you have a function is_divisible (n, x) which returns true if n is divisible by x. It runs in $O(n)$ time and $O(1)$ space. Write a function is_prime which takes a number and returns true if it's prime and false otherwise. You'll want to use a helper function.

Running time?
 Space?

6. Homework: Write an iterative version of find_e.
Running time? Space?
