National University of Singapore School of Computing CS1101S: Programming Methodology Semester I, 2013/2014

Recitation 2 Recursion & Orders of Growth

Definitions

Theta (Θ) notation:

 $f(n) = \Theta(g(n)) \rightarrow$ There exist k_1, k_2, n s.t.: $k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n)$, for $n > n_0$

Big-O notation:

 $f(n) = O(g(n)) \rightarrow$ There exist k, n s.t.: $f(n) \leq k \cdot g(n)$, for $n > n_0$

Adversarial approach: For you to show that $f(n) = \Theta(g(n))$, you pick k_1 , k_2 , and n_0 , then I (the adversary) try to pick an n which doesn't satisfy $k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n)$.

Implications

Ignore constants. Ignore lower order terms. For a sum, take the larger term. For a product, multiply the two terms. Orders of growth are concerned with how the effort scales up as the size of the problem increases, rather than an exact measure of the cost.

Typical Orders of Growth

- + $\Theta(1)$ Constant growth. Simple, non-looping, non-decomposable operations have constant growth.
- $\Theta(\log n)$ Logarithmic growth. At each iteration, the problem size is scaled down by a constant amount: (call-again (/ n c)).
- $\Theta(n)$ Linear growth. At each iteration, the problem size is decremented by a constant amount: (call-again (- n c)).
- $\Theta(n \log n)$ Nifty growth. Nice recursive solution to normally $\Theta(n^2)$ problem.
- $\Theta(n^2)$ Quadratic growth. Computing correspondence between a set of *n* things, or doing something of cost *n* to all *n* things both result in quadratic growth.
- $\Theta(2^n)$ Exponential growth. Really bad. Searching all possibilities usually results in exponential growth.

What's n?

Order of growth is *always* in terms of the size of the problem. Without stating what the problem is, and what is considered primitive (what is being counted as a "unit of work" or "unit of space"), the order of growth doesn't have any meaning.

Problems:

1. Give order notation for the following:

```
(a) 5n<sup>2</sup> + n
    Answer: O(n<sup>2</sup>)
(b) √n + n
    Answer: O(n)
    (c) 3<sup>n</sup>n<sup>2</sup>
    Answer: O(3<sup>n</sup>n<sup>2</sup>)
2. function fact (n) {
        if (n === 0) {
            return 1;
        } else {
            return n * fact (n-1);
        }
    }
}
```

Running time: O(n). Space: O(n).

3. Write an iterative version of ${\tt fact}.$

Answer:

```
function fact(n) {
      function fact_iter(counter, product) {
           if(counter === 0) {
               return product;
           } else {
               return fact_iter(counter - 1, product * counter);
           }
       }
      return fact_iter(n, 1);
   }
4. function find_e(n) {
      if(n === 0) {
           return 1;
       } else {
          return (1 / fact(n)) + find_e(n - 1);
       }
   }
```

Running time: $O(n^2)$. Space: O(n).

5. Assume you have a function is_divisible (n, x) which returns true if n is divisible by x. It runs in O(n) time and O(1) space. Write a function is_prime which takes a number and returns true if it's prime and false otherwise. You'll want to use a helper function.

```
Answers:
```

```
function is_prime(x) {
    function prime_helper(n) {
        if(n > Math.sqrt(x)) {
           return true;
        }else if(is_divisible(x, n)) {
            return false;
        } else {
            return prime_helper(n + 1);
        }
    }
    if(x === 1) {
        return false;
    }else if(x === 2) {
       return true;
    } else {
        return prime_helper(2);
    }
}
// Alternate solution - what's the difference?
function is_prime2(x) {
    function prime_helper(n) {
        if(n === 1) {
            return true;
        }else if(is_divisible(x, n)) {
            return false;
        } else {
            return prime_helper(n - 1);
        }
    }
    if(x === 1) {
        return false;
    } else {
        return prime_helper(Math.floor(Math.sqrt(x)));
    }
}
```

Running time: $O(n\sqrt{n})$. Space: O(1).

6. Homework: Write an iterative version of find_e.

```
function find_e(n) {
    function iter(counter, sum) {
        if(counter === 0) {
            return sum;
        } else {
            return iter(counter - 1, sum + (1 / fact(counter)));
        }
    }
    return iter(n, 1);
}
```

Running time: $O(n^2)$. Space: O(1).