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Recursion & Orders of Growth

Definitions

Theta (Θ) notation:

f(n) = Θ(g(n)) → There exist k1, k2, n s.t.: k1 · g(n) ≤ f(n) ≤ k2 · g(n), for n > n0

Big-O notation:

f(n) = O(g(n)) → There exist k, n s.t.: f(n) ≤ k · g(n), for n > n0

Adversarial approach: For you to show that f(n) = Θ(g(n)), you pick k1, k2, and n0, then I (the
adversary) try to pick an n which doesn’t satisfy k1 · g(n) ≤ f(n) ≤ k2 · g(n).

Implications

Ignore constants. Ignore lower order terms. For a sum, take the larger term. For a product,
multiply the two terms. Orders of growth are concerned with how the effort scales up as the size
of the problem increases, rather than an exact measure of the cost.

Typical Orders of Growth

• Θ(1) - Constant growth. Simple, non-looping, non-decomposable operations have constant
growth.

• Θ(logn) - Logarithmic growth. At each iteration, the problem size is scaled down by a
constant amount: (call-again (/ n c)).

• Θ(n) - Linear growth. At each iteration, the problem size is decremented by a constant
amount: (call-again (- n c)).

• Θ(n logn) - Nifty growth. Nice recursive solution to normally Θ(n2) problem.

• Θ(n2) - Quadratic growth. Computing correspondence between a set of n things, or doing
something of cost n to all n things both result in quadratic growth.

• Θ(2n) - Exponential growth. Really bad. Searching all possibilities usually results in expo-
nential growth.
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What’s n?

Order of growth is always in terms of the size of the problem. Without stating what the problem
is, and what is considered primitive (what is being counted as a “unit of work” or “unit of space”),
the order of growth doesn’t have any meaning.

Problems:

1. Give order notation for the following:

(a) 5n2 + n

Answer: O(n2)

(b)
√
n+ n

Answer: O(n)

(c) 3nn2

Answer: O(3nn2)

2. function fact(n) {

if(n === 0) {

return 1;

} else {

return n * fact(n-1);

}

}

Running time: O(n). Space: O(n).

3. Write an iterative version of fact.

Answer:

function fact(n) {

function fact_iter(counter, product) {

if(counter === 0) {

return product;

} else {

return fact_iter(counter - 1, product * counter);

}

}

return fact_iter(n, 1);

}

4. function find_e(n) {

if(n === 0) {

return 1;

} else {

return (1 / fact(n)) + find_e(n - 1);

}

}

Running time: O(n2). Space: O(n).
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5. Assume you have a function is divisible(n, x) which returns true if n is divisible by x.
It runs in O(n) time and O(1) space. Write a function is prime which takes a number and
returns true if it’s prime and false otherwise. You’ll want to use a helper function.

Answers:

function is_prime(x) {

function prime_helper(n) {

if(n > Math.sqrt(x)) {

return true;

}else if(is_divisible(x, n)) {

return false;

} else {

return prime_helper(n + 1);

}

}

if(x === 1) {

return false;

}else if(x === 2) {

return true;

} else {

return prime_helper(2);

}

}

// Alternate solution - what’s the difference?

function is_prime2(x) {

function prime_helper(n) {

if(n === 1) {

return true;

}else if(is_divisible(x, n)) {

return false;

} else {

return prime_helper(n - 1);

}

}

if(x === 1) {

return false;

} else {

return prime_helper(Math.floor(Math.sqrt(x)));

}

}

Running time: O(n
√
n). Space: O(1).

6. Homework: Write an iterative version of find e.

function find_e(n) {

function iter(counter, sum) {

if(counter === 0) {

return sum;

} else {

return iter(counter - 1, sum + (1 / fact(counter)));

}

}

return iter(n, 1);

}
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Running time: O(n2). Space: O(1).


	What's n?

