
CS1101S, Semester I, 2013/2014—Recitation 3 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology

Semester I, 2013/2014

Recitation 3

Higher-Order Functions

From Lecture

Implementation of pair, head and tail:

function pair(x,y) {

return function(m) { return m(x, y); }

}

function head(z) {

return z(function(p, q) { return p; });

}

function tail(z) {

return z(function(p, q) { return q; });

}

Definitions

The following are two higher-order functions discussed in lecture:

function sum(term, a, next, b) {

if(a > b) {

return 0;

} else {

return term(a) + sum(term, next(a), next, b);

}

}

function fold(op, f, n) {

if(n === 0) {

return f(0);

} else {

return op(f(n), fold(op, f, n - 1));

}

}

Note: it is not necessary to memorize these defintions, or even the names of these functions.
Definitions of such functions (if they are used) will be given in an Appendix for examinations.
What is most important is that students must be able to read the definition for such a function
and understand what it does.



CS1101S, Semester I, 2013/2014—Recitation 3 2

Problems:

1. Evaluate the return values of the following sets of statements:

(a) var x = 12; x;

(b) var x = 12; (function() x = 15; )(); x;

(c) var x = 20; (function() var x = 15; )(); x;

2. Write a function my sum that computes the following sum, for n ≥ 1:

1× 2 + 2× 3 + · · ·+ n× (n+ 1)

3. Is the function my sum as defined in Question 1 above a recursive process or an iterative
process? What is the order of growth in time and in space?

4. If your answer in Question 2 is a recursive process, re-write my sum as an iterative process.
If your answer in Question 2 is an iterative process, re-write my sum as a recursive process.

5. We can also define my sum in terms of the higher-order function sum. Complete the defi-
nition of my sum below. You cannot change the definition of sum; you may only call it with
appropriate arguments.



CS1101S, Semester I, 2013/2014—Recitation 3 3

function my_sum(n) { return sum(<T1>, <T2>, <T3>, <T4>); }

T1:

T2:

T3:

T4:

6. Suppose instead we define my sum in terms of the higher-order function fold. Complete the
definition of my sum below.

function my_sum(n) { return fold(<T1>, <T2>, <T3>); }

T1:

T2:

T3:

7. Write an iterative version of sum.

8. Homework: Write an iterative version of fold.


