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Recitation 4
Data Abstraction

JavaScript

N oo & e b=

pair (a,b): makes a pair from a and b

head (c): extracts the value of the first part of the pair c

tail (c): extracts the value of the second part of the pair ¢

list(a, b, ¢, ...): builds alist of the arguments to the function
length (list): returns the number of elements in 1ist

list_ref (1lst,n): returns the nth element of 1st

append(listl,list2): returns a new list consisting of the elements of the first list fol-
lowed by the elements of the second list. The new list is made from new pairs for the first
argument; the second argument (which need not actually be a list) is merely placed at the
end of the new structure.

8. reverse (1st): returns new list containing the elements of 1st in reverse order
Problems:
1. Draw the box-and-pointer diagram for the values of the following expressions. Also give the

representation that the JediScript Console uses.

(@) pair(1,2)

(b) pair(1,pair(3,pair(5,[1)))
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(c) pair(pair (pair(3,2),pair(1,0)),1[])

(d) pair(0,1list(1,2))

(e) 1ist (pair(1,2),1list(4,5),3)

2. Write JediScript Week 5 expressions that do not use the array syntax [...], whose values
will print out like the following.

(1, (2, (3, [111]
(1, (2, 311
tey, 2, (111, 003, (4, (111, (05, [6, (111, [I111]

3. Write expressions using head and tail that will return 4 when the 1st is bound to the
following values:

(a) 1ist(7,6,5,4,3,2,1)

(b) 1ist (list(7),1list(6,5,4),1ist(3,2),1)

(c) 1ist (7,
list (6,
list (5,
list (4,
list (3,
list (2,
list (1)))))))
(d) 1ist (7,

list (list (list (6,5,
list (list (4)),
3),
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Note: The key idea in this question is that you have to understand how to translate an ex-
pression into a box and pointer diagram and to systematically traverse the box and pointer
structure.

4. You found a holiday assignment at the Registar’s Office. Your job is to write a program to
help students with their scheduling of classes. You are provided with an implementation of
the records for each class as follows:

function make_class (number,units) {
return list (number,units);
}
var get_class_number = head;
function get_class_units(cl) {
return head(tail(cl));
}
function make_units(lecture,tutorial, lab, homework, prep) {
return list (lecture,tutorial, lab, homework, prep);
}
var get_units_lecture = head;
function get_units_tutorial (units) {
return head(tail (units));
}
function get_units_lab(units) {
return head(tail (tail (units)));
}
function get_units_homework (units) {
return head(tail (tail(tail (units))));
}
function get_units_prep(units) {
return head(tail (tail(tail(tail (units)))));
}
function get_class_total_units(cl) {
var units = get_class_units(cl);
return get_units_lecture(units) +
get_units_tutorial (units) +
get_units_lab(units) +
get_units_homework (units) +
get_units_prep(units);
}
function is_same_class(cl,c2) {
return get_class_number(cl) ===
get_class_number(c2);

}

Each class has a course code and an associated number of credit unit, e.g. for CS1101S,
that’s 3-2-1-3-3. Your job is now to write a schedule object to represent the sets of classes
taken by a student.

(@) Write a constructor that returns an empty schedule.

function empty_schedule() {

}

Does it make sense to talk about the order of growth in time and space for this function?
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(b) Write a function that when given a class and a schedule, returns a new schedule
including the new class.

function add_class(class, schedule) {

}
Order of growth in time, space?
(c) Write a function that computes the total number of units in a schedule.

function total_scheduled_units(sched) {

}

Order of growth in time, space?
(d) Write a function that drops a particular class from a schedule.

function drop_class(sched, class) {

}

Order of growth in time, space?

(e) Implement a credit limit by taking in a schedule, and removing classes until the total
number of units is less than max_credits.

function credit_limit (sched, max_credits) {

}

Order of growth in time, space?

(f) Homework 1: Implement total_scheduled_units using higher-order functions accumulate
and map.

(g) Homework 2: Implement an improved version of credit_limit that will return a
schedule with a total number of units is less than max_credits, but with the maximal
number of classes. What is the order of growth of your solution? Is that the best you
can do?



