CS1101S, Semester I, 2013/2014—Recitation 4 1

National University of Singapore
School of Computing
CS1101S: Programming Methodology
Semester I, 2013/2014

Recitation 4
Data Abstraction

JavaScript

N oo & e b=

pair (a,b): makes a pair from a and b

head (c): extracts the value of the first part of the pair c

tail (c): extracts the value of the second part of the pair ¢

list(a, b, ¢, ...): builds alist of the arguments to the function
length (list): returns the number of elements in 1ist

list_ref (1lst,n): returns the nth element of 1st

append(listl,list2): returns a new list consisting of the elements of the first list fol-
lowed by the elements of the second list. The new list is made from new pairs for the first
argument; the second argument (which need not actually be a list) is merely placed at the
end of the new structure.

8. reverse (1st): returns new list containing the elements of 1st in reverse order
Problems:
1. Draw the box-and-pointer diagram for the values of the following expressions. Also give the

representation that the JediScript Console uses.

(@) pair(1,2)

(b) pair(1,pair(3,pair(5,[1)))



CS1101S, Semester I, 2013/2014—Recitation 4 2

(c) pair(pair (pair(3,2),pair(1,0)),1[])

(d) pair(0,1list(1,2))

(e) 1ist (pair(1,2),1list(4,5),3)

2. Write JediScript Week 5 expressions that do not use the array syntax [...], whose values
will print out like the following.

(1, (2, (3, [111]
(1, (2, 311
tey, 2, (111, 003, (4, (111, (05, [6, (111, [I111]

3. Write expressions using head and tail that will return 4 when the 1st is bound to the
following values:

(a) 1ist(7,6,5,4,3,2,1)

(b) 1ist (list(7),1list(6,5,4),1ist(3,2),1)

(c) 1ist (7,
list (6,
list (5,
list (4,
list (3,
list (2,
list (1)))))))
(d) 1ist (7,

list (list (list (6,5,
list (list (4)),
3),



CS1101S, Semester I, 2013/2014—Recitation 4 3

Note: The key idea in this question is that you have to understand how to translate an ex-
pression into a box and pointer diagram and to systematically traverse the box and pointer
structure.

4. You found a holiday assignment at the Registar’s Office. Your job is to write a program to
help students with their scheduling of classes. You are provided with an implementation of
the records for each class as follows:

function make_class (number,units) {
return list (number,units);
}
var get_class_number = head;
function get_class_units(cl) {
return head(tail(cl));
}
function make_units(lecture,tutorial, lab, homework, prep) {
return list (lecture,tutorial, lab, homework, prep);
}
var get_units_lecture = head;
function get_units_tutorial (units) {
return head(tail (units));
}
function get_units_lab(units) {
return head(tail (tail (units)));
}
function get_units_homework (units) {
return head(tail (tail(tail (units))));
}
function get_units_prep(units) {
return head(tail (tail(tail(tail (units)))));
}
function get_class_total_units(cl) {
var units = get_class_units(cl);
return get_units_lecture(units) +
get_units_tutorial (units) +
get_units_lab(units) +
get_units_homework (units) +
get_units_prep(units);
}
function is_same_class(cl,c2) {
return get_class_number(cl) ===
get_class_number(c2);

}

Each class has a course code and an associated number of credit unit, e.g. for CS1101S,
that’s 3-2-1-3-3. Your job is now to write a schedule object to represent the sets of classes
taken by a student.

(@) Write a constructor that returns an empty schedule.

function empty_schedule() {

}

Does it make sense to talk about the order of growth in time and space for this function?



CS1101S, Semester I, 2013/2014—Recitation 4 4

(b) Write a function that when given a class and a schedule, returns a new schedule
including the new class.

function add_class(class, schedule) {

}
Order of growth in time, space?
(c) Write a function that computes the total number of units in a schedule.

function total_scheduled_units(sched) {

}

Order of growth in time, space?
(d) Write a function that drops a particular class from a schedule.

function drop_class(sched, class) {

}

Order of growth in time, space?

(e) Implement a credit limit by taking in a schedule, and removing classes until the total
number of units is less than max_credits.

function credit_limit (sched, max_credits) {

}

Order of growth in time, space?

(f) Homework 1: Implement total_scheduled_units using higher-order functions accumulate
and map.

(g) Homework 2: Implement an improved version of credit_limit that will return a
schedule with a total number of units is less than max_credits, but with the maximal
number of classes. What is the order of growth of your solution? Is that the best you
can do?



