
CS1101S, Semester I, 2013/2014—Recitation 4 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology

Semester I, 2013/2014

Recitation 4

Data Abstraction

JavaScript

1. pair(a,b): makes a pair from a and b

2. head(c): extracts the value of the first part of the pair c

3. tail(c): extracts the value of the second part of the pair c

4. list(a, b, c, ...): builds a list of the arguments to the function

5. length(list): returns the number of elements in list

6. list_ref(lst,n): returns the nth element of lst

7. append(list1,list2): returns a new list consisting of the elements of the first list fol-
lowed by the elements of the second list. The new list is made from new pairs for the first
argument; the second argument (which need not actually be a list) is merely placed at the
end of the new structure.

8. reverse(lst): returns new list containing the elements of lst in reverse order

Problems:

1. Draw the box-and-pointer diagram for the values of the following expressions. Also give the
representation that the JediScript Console uses.

(a) pair(1,2)

(b) pair(1,pair(3,pair(5,[])))



CS1101S, Semester I, 2013/2014—Recitation 4 2

(c) pair(pair(pair(3,2),pair(1,0)),[])

(d) pair(0,list(1,2))

(e) list(pair(1,2),list(4,5),3)

2. Write JediScript Week 5 expressions that do not use the array syntax [...], whose values
will print out like the following.

[1, [2, [3, []]]]

[1, [2, 3]]

[[1, [2, []]], [[3, [4, []]], [[5, [6, []]], []]]]

3. Write expressions using head and tail that will return 4 when the lst is bound to the
following values:

(a) list(7,6,5,4,3,2,1)

(b) list(list(7),list(6,5,4),list(3,2),1)

(c) list(7,

list(6,

list(5,

list(4,

list(3,

list(2,

list(1)))))))

(d) list(7,

list(list(list(6,5,

list(list(4)),

3),

2)

),

1)



CS1101S, Semester I, 2013/2014—Recitation 4 3

Note: The key idea in this question is that you have to understand how to translate an ex-
pression into a box and pointer diagram and to systematically traverse the box and pointer
structure.

4. You found a holiday assignment at the Registar’s Office. Your job is to write a program to
help students with their scheduling of classes. You are provided with an implementation of
the records for each class as follows:

function make_class(number,units) {

return list(number,units);

}

var get_class_number = head;

function get_class_units(cl) {

return head(tail(cl));

}

function make_units(lecture,tutorial,lab,homework,prep) {

return list(lecture,tutorial,lab,homework,prep);

}

var get_units_lecture = head;

function get_units_tutorial(units) {

return head(tail(units));

}

function get_units_lab(units) {

return head(tail(tail(units)));

}

function get_units_homework(units) {

return head(tail(tail(tail(units))));

}

function get_units_prep(units) {

return head(tail(tail(tail(tail(units)))));

}

function get_class_total_units(cl) {

var units = get_class_units(cl);

return get_units_lecture(units) +

get_units_tutorial(units) +

get_units_lab(units) +

get_units_homework(units) +

get_units_prep(units);

}

function is_same_class(c1,c2) {

return get_class_number(c1) ===

get_class_number(c2);

}

Each class has a course code and an associated number of credit unit, e.g. for CS1101S,
that’s 3-2-1-3-3. Your job is now to write a schedule object to represent the sets of classes
taken by a student.

(a) Write a constructor that returns an empty schedule.

function empty_schedule() {

}

Does it make sense to talk about the order of growth in time and space for this function?



CS1101S, Semester I, 2013/2014—Recitation 4 4

(b) Write a function that when given a class and a schedule, returns a new schedule
including the new class.

function add_class(class, schedule) {

}

Order of growth in time, space?

(c) Write a function that computes the total number of units in a schedule.

function total_scheduled_units(sched) {

}

Order of growth in time, space?

(d) Write a function that drops a particular class from a schedule.

function drop_class(sched, class) {

}

Order of growth in time, space?

(e) Implement a credit limit by taking in a schedule, and removing classes until the total
number of units is less than max credits.

function credit_limit(sched, max_credits) {

}

Order of growth in time, space?

(f) Homework 1: Implement total_scheduled_unitsusing higher-order functions accumulate
and map.

(g) Homework 2: Implement an improved version of credit_limit that will return a
schedule with a total number of units is less than max_credits, but with the maximal
number of classes. What is the order of growth of your solution? Is that the best you
can do?


