Chapter 12 Projects

1. [after §12.2] Savings Accounts *:

Write a program that establishes two savings accounts with saver1 having account number 10002 with an initial balance of $2,000, and saver2 having account 10003 with an initial balance of $3,000. Set a common rate of interest at 5% per year. At the end of each month, update the balance by adding one month’s interest to the balance, so that the balance compounds monthly. Print an output that displays the month number and the account number and the balance for each of the two accounts. Use month 0 to display the initial balances, month 1 to display the balances after the first month’s interest, and so on. At the end of the year, display the total balance for both accounts combined, like this:

Output:

Monthly balances for one year with 0.05 annual interest:

Month Account # Balance Account # Balance

----- --------- ------- --------- -------

 0 10002 2000.00 10003 3000.00

 1 10002 2008.33 10003 3012.50

 2 10002 2016.70 10003 3025.05

 3 10002 2025.10 10003 3037.66

 4 10002 2033.54 10003 3050.31

 5 10002 2042.02 10003 3063.02

 6 10002 2050.52 10003 3075.79

 7 10002 2059.07 10003 3088.60

 8 10002 2067.65 10003 3101.47

 9 10002 2076.26 10003 3114.39

 10 10002 2084.91 10003 3127.37

 11 10002 2093.60 10003 3140.40

 12 10002 2102.32 10003 3153.49

Final balance of both accounts combined: 5255.81

Use two classes, a SavingsAccount class and a SavingsAccountDriver class.

In the SavingsAccount class, declare a class variable called annualInterestRate, an instance constant called ACCOUNT_NUMBER, and an instance variable called balance. Provide a two-parameter constructor to initialize the instance constant and instance variable, and provide accessors for the instance constant and instance variable. Provide an addMonthlyInterest method to update the balance, by adding (balance * annualInterestRate / 12) to the current balance. Also provide a class method that sets the annual interest rate.

In the SavingsAccountDriver class, instantiate the saver1 and saver2 objects. Set the annual interest rate at 0.05. Print the table heading lines. Use a for loop to print the initial account numbers and balances and the account numbers and balances each month after that month’s interest has been added. After the last month’s printout, compute and display the total of both balances.
2. [after §12.4] Statistics Functions ***:

Statisticians use various probability distributions and special statistical functions. Statistics texts often present these functions in tables in their appendices. There are also software packages that contain these functions. However, if a program you’re writing needs to use these functions, the tables in the backs of textbooks and other people’s software packages are not what you want. You want code for those functions in your program!

This project’s description gives you algorithms for several popular statistical functions. The following UML class diagram shows how they are related.

[image: image1]
As in Java’s Math class, everything should be static. Give each class its own main driver, to demonstrate the functions in that class.

2. Gamma class

Provide IMAX and ERROR constants as common values for two derived classes – the IncompleteGamma class and the IncompleteBeta class.

In effect, the gamma function returns the “factorial” of a real number. The logGamma method is used not only for the gamma function itself but also for many other statistical functions. We usually compute the natural logarithm of gamma instead of gamma, because gamma itself can easily overflow, and most applications use ratios of gamma, and the ratios are typically much smaller than the individual gamma values. The algorithm for logGamma is a “magic” recipe invented by C. Lanczos, and we’ll just give it to you.

First, define an array of 6 constants:

coef[] ← {76.18009173, -86.50532033, 24.01409822,

 -1.231739516, 0.120858003e-2, -0.536382e-5}

Then, provide an if statement that terminates execution if the parameter, a, is negative. Then do this:

n ← a – 1

temp ← n + 5.5

temp ← temp – (n + 0.5) * loge(temp)

sum = 1

for all coef

 n ← n + 1

 sum ← coef / n

return –temp + loge(2.50662827465 * sum)

In the gamma method, just exponentiate logGamma. When the argument, a, is an integer, gamma should return a value that is equal to the factorial of (a - 1). When a is not integer, gamma should return a value that varies continuously between the values returned by the adjacent integers. In other words, gamma(a), represented in mathematical formulas as Γ(a), is a floating point version of factorial(a - 1), or (a - 1)!. How about that!

The gamma distribution function, γ(a,x), generated by the two-argument gamma method, should simply display the formula:
γ(a,t) = x(a-1) e-t / Γ(a)

This gives the probability of taking a time somewhere in the range between t – ½ and t + ½ to complete a task. In general, the task is composed of several random-length subtasks, which must be done sequentially – not in parallel. The parameter, a, approximately represents the number of independent subtasks in the overall task.
Here is what the gamma distribution function looks like for various values of a:

[image: image2.emf]0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

The abscissa is t, and the ordinate is the value of γ(a, t). The black curve is for a = 0.5. The magenta curve is for a = 1.0. The yellow curve is for a = 2.0. The turquoise curve is for a = 4.0. When a = 1.0, there is exactly one subtask, and the gamma distribution becomes the simple exponential distribution. The area under each of these curves is 1.0.

In the factorial method, use two alternative algorithms. If n <= 20, fill the static array from nHi = 0 up to the currently needed factorial by multiplying the previous array element by the next long integer. If n > 20, long overflows, and you must use exp(logGamma(n + 1)).

In the main method, ask the user to enter a and print gamma(a) and factorial(a - 1). Then ask the user to enter t and print gamma(a,t). The Γ(a) values should be the same as (a - 1)! when a is an integer, and you can check your gamma(a) method by comparing its results with hand-calculated values of the factorial. You can check your gamma(a,t) method for a = 0.5, 1.0, 2.0, and 4.0, by comparing its outputs at various t with the curves displayed above.

2. IncompleteGamma class

The incomplete gamma function, ІΓ(a,t), gives the probability of completing a sequential independent random processes in some time less than t. This is the area under one of the gamma curves (like those shown above) to the left of some particular time, t. So, for any value of a, the incomplete gamma function rises monotonically from 0 to 1.0 as t increases from 0 to +infinity.

The algorithm for computing the incomplete gamma function is another magic recipe.
 In the incompleteGamma method, print a diagnostic message and terminate execution if a <= 0 or if t < 0. If t < a + 1, call the series helper method and return the value the helper returns. Otherwise, call the continuousFraction helper method, and return 1.0 minus the value the helper returns.

In the series method, initialize: aPlus ← a, term ← 1/a, and sum ← term. Then implement this algorithm:

 for i from 0 to IMAX

 aPlus++

 term ← term * t / aPlus

 sum ← sum + term

 if (abs(term / sum) < ERROR) break

After the for loop, if i >= IMAX, print a message indicating not enough iterations. Then return the value:

sum * exp(-t + a * loge(t) - logGamma(a))

Notice how you will normalize the answer by subtracting Γ(a) in the exponent. This will utilize a method inherited from the Gamma class.

In the continuousFraction method, initialize:
fac ← 1.0;

a0 ← 1.0;

b0 ← 0.0;

a1 ← t;

b1 ← 1.0;

gold ← 0.0;

g ← 0.0.
Then implement this algorithm:

for i from 0 to IMAX

 ip1 ← i + 1

 ip1ma ← ip1 - a

 a0 ← (a1 + a0 * ip1ma) * fac

 b0 ← (b1 + b0 * ip1ma) * fac

 ip1f ← ip1 * fac

 a1 ← t * a0 + ip1f * a1

 b1 ← t * b0 + ip1f * b1

 if a1 > 1.0 // renormalize

 fac ← 1.0 / a1

 g ← b1 * fac

 if abs((g - gold) / g) < ERROR

 break

 else

 gold ← g

After the for loop, if i >= IMAX, print a message indicating not enough iterations. Then return the value:

g * Math.exp(-t + a * Math.log(t) - logGamma(a))

Again, notice how you will normalize by subtracting Γ(a) in the exponent.

The cumulativePoisson method is supposed to generate the probability of having no more than “m” events in a time interval in which the expected number of events is x. This method should return the value generated by:

1.0 - incompleteGamma(m + 1, x)

The cumulativeNormal method is supposed to generate the area under a normalized Gaussian from –infinity up to an arbitrary input value, x. For this method, first compute:

value ← incompleteGamma(0.5, x * x / 2.0)

Then, if x > 0 return:

0.5 + 0.5 * value

Otherwise, return:

0.5 - 0.5 * value

Assume some random process can be characterized by a particular distribution curve, like one of the gamma distribution curves shown above. Then, with vertical lines, partition that assumed curve into bins, and find the fraction of the total area under the curve in each bin minus the area between the adjacent pair of vertical lines that bound that bin. That area is the fraction of all experimental samples that should fall in that bin, if the assumed theoretical distribution is correct. Chi Square is the sum over all bins of the square of the difference between the observed number of observations in a bin and the theoretically expected number of observations for that bin, with each squared difference divided by the theoretically expected number for that bin. A large value of Chi Square says the assumed distribution does not fit the data very well. The question is, how large is too large? For the answer, a user should input the calculated Chi Square value, along with degrees of freedom (number of bins minus number of parameters adjusted to fit the distribution function to the data) into the chiSquare method. The probability returned by the chiSquare method is the probability that a correctly assumed distribution could result in a Chi Square value at least as large as the one input. If the value returned is greater than 0.1, the assumed distribution is believable. If it is less than 0.001, the assumed distribution is suspect.

Begin the chiSquare method by printing a diagnostic message and terminating execution if the input Chi Square value is less than zero or the degrees of freedom is less than one. If the input is OK, return the value given by:

1.0 - incompleteGamma(0.5 * degreesFreedom, 0.5 * chiSquare)

In the main method, ask the user to select among the alternatives: incompleteGamma(g), cumulativePoisson(p), normal(n), chiSquared(x). For the ‘g’ case, ask the user to enter values for “a” and “t” and print the value returned by the incompleteGamma method. For the ‘p’ case, ask the user to input the maximum number of events and the expected number of events, and print the value returned by the cumulativePoisson method. For the ‘n’ case, ask the user to enter a value for the normalized Gaussian random variable, x, and print the value returned by the cumulativeNormal method. For the ‘x’ case, ask the user to enter values for Chi Square and degrees of freedom, and print the value returned by the chiSquare method.

[image: image3]
2. Beta class

The beta function is Β(a,b) = Γ(a) Γ(b) / Γ(a + b). The logBeta method should return the value:

logGamma(a) + logGamma(b) - logGamma(a + b)

The two-parameter beta method should return the value:

exp(logBeta(a, b)).

The beta distribution function, β(a,b,x), is given by:

β(a,b,x) = x(a – 1.0) * (1.0 – x)(b – 1.0) / Β(a,b)

This distribution function provides a wide range of useful shapes in the range 0.0 < x < 1.0: When a = 1 and b = 1, it generates the uniform distribution. When a = 2 and b = 1, it generates a linear up-ramp. When a = 1 and b = 2, it generates a linear down ramp. When a = 2 and b = 2, it generates an inverted parabola. When a < 1 and b < 1, it generates a bowl with infinitely high sides. The areas under all of these curves are exactly equal to 1.0. The three-parameter beta method should return the value generated by the java expression:

Math.exp((a - 1) * Math.log(x) +

 (b - 1.0) * Math.log(1.0 - x) - logBeta(a, b))

The main method should ask the user to enter values for “a” and “b,” and print the value returned by the two-parameter beta method. Then it should ask the user to enter a value for “x,” and print the value returned by the three-parameter beta method.

Sample session:

Enter Beta parameters a and b: 5.0 1.5
Beta(a,b)= 0.07388167387892877

Enter x: 0.9

beta(a,b,x)= 2.808234118025584

2. IncompleteBeta class

The incomplete beta function, ІB(a,b,x), gives the area under β(a,b,x) between 0.0 and x. So, the incomplete beta function rises monotonically from 0 to 1.0 as x increases from 0 to 1.0.

In the incompleteBeta method, if x < 0 or x > 1.0, print an out-of-range message, and terminate execution. Then if x is equal to either 0.0 or 1.0, make the assignment:

multiplier ← 0.0
Otherwise, make the assignment:

multiplier ←

 exp(a * loge(x) + b * loge(1.0 - x) - logBeta(a, b))

Then if x < (a + 1.0) / (a + b + 2.0) and a > 0, return the value:

multiplier * continuousFraction(a, b, x) / a
Otherwise return the value:

1.0 - multiplier * continuousFraction(b, a, (1.0 - x)) / b

The continuousFraction method does the real work in the evaluation of the incomplete beta function. It’s another “magic” recipe. Start by initializing several variables:

ap1 ← (a + 1.0);

am1 ← (a - 1.0);

apb ← (a + b);

az ← 1.0;
am ← 1.0;

bz ← 1.0 - apb * x / ap1;

bm ← 1.0.

Then implement this algorithm:

for i from 1 through IMAX

 twoI ← i + i

 numerator ← i * (b - i) * x / ((am1 + twoI) * (a + twoI))

 ap ← az + numerator * am

 bp ← bz + numerator * bm

 numerator ← -(a + i) * (apb + i) * x /

 ((ap1 + twoI) * (a + twoI))

 app ← ap + numerator * az

 bpp ← bp + numerator * bz

 aOld ← az

 am ← ap / bpp

 bm ← bp / bpp

 az ← app / bpp

 bz ← 1.0

 if abs(az - aOld) < ERROR * abs(az)

 break

After the for loop, if i > IMAX, print a message indicating excessive error. And finally, return the final value of az.

The studentT method computes the probability that the true mean of a measured phenomenon is within a range that is plus or minus [t * (measured standard deviation)] from the measured mean.
 To use this method, you compute t by dividing (the difference between the mean of the measurements and some reference value) by the standard deviation determined from the same measurements. Then you call the studentT method with this computed value of t as the first argument, and degrees of freedom (one less than the number of measurements) as the second argument. If the probability returned by studentT is less than some acceptably small value, like 0.02, the chance that the true mean of the measured phenomenon is on the other side of the reference value is only 1% (half of this returned probability).

Implement the studentT method by making the assignment:

x ← degFreedom / (degFreedom + t * t)

And then returning the value returned by:

incompleteBeta(0.5 * degFreedom, 0.5, x)
In the main method, ask the user to select either incompleteBeta(b) or studentT(t). For case ‘b’, ask the user for Beta arguments “a” and “b”, and print the value returned by the incompleteBeta method. For case ‘t’, ask the user for degrees of freedom and the student t value, and print the value returned by the studentT method.

Sample sessions:

Select incompleteBeta(b) or studentT(t): b
Enter Beta parameters a and b: 5.0 1.5
Enter x: 0.9
incomplete beta function= 0.7761721343078992

Select incompleteBeta(b) or studentT(t): t
Enter degrees of freedom: 15
Enter value of student t: 1.753
two-sided overlap probability= 0.10000889662154729

2. Binomial class

This class will use the one-parameter gamma method inherited from the Gamma class and the incompleteBeta method inherited from the IncompleteBeta class.

In the combinations method, if k < 0 or k > n, print an outside-of-range message and terminate the execution. Then, implement this:

logCoef ←

 logGamma(n + 1) - logGamma(k + 1) - logGamma(n - k + 1)

coef ← exp(logCoef)
And return the rounded value of coef.

In the coefficients method, create an array of length n + 1, load each element, k, of this array with the value returned by combinations(n, k), and return a reference to the new array. The elements of this array should be equal to the coefficients of a binomial.

In the probability method, if k > n, return 0.0. Otherwise, return the value of this expression:

combinations(n,k) * pk (1 - p)(n - k)
If the probability of a binary event is p per trial, this returns the probability of that event occurring exactly k times in n trials.

In the cumulativeProbability method, if k > n return 0.0. Otherwise, return the value of this expression:

incompleteBeta(k, (n - k + 1), p)
Assuming the probability of a binary event is p per trial, this returns the probability of that event occurring k or more times in n trials.

In the main method, ask the user to select between coefficients(c) or probability(p). For the ‘c’ case, ask the user to enter the order, n. Then print the value of each of the coefficients in the array returned by a call to the coefficients method. For the ‘p’ case, ask the user to enter the total number of trials, the number of successes or minimum successes, and the single-trial probability. Then print the value returned by a call to the probability method, and also print the value returned by a call to the cumulativeProbability method.

Sample sessions:

Select coefficients(c) or probability(p): c
Enter order: 4
1.0

4.0

6.0

4.0

1.0

Select coefficients(c) or probability(p): p
Enter total number of trials: 6
Enter successes or minimum successes: 4
Enter single-trial probability: .5
probability of 4 successes = 0.234375

probability of at least 4 successes = 0.34375000002342193

3. [after §12.5] Car Program *:

Your uncle is trying to keep track of his new-car and used-car lots by writing a Java program. He needs your help in setting up his classes.

Implement a superclass named Car that contains a price instance variable, a getPrice method, and a 1-parameter constructor. The getPrice method is a simple accessor method that returns the price instance variable’s value. The 1-parameter constructor receives a cost parameter and assigns a value to the price instance variable based on this formula:

price = cost * 2;

Implement two classes named NewCar and UsedCar; they are both derived from the Car superclass. NewCar should contain a color instance variable (the car’s color). UsedCar should contain a mileage instance variable (the car’s odometer reading). The NewCar and UsedCar classes should each contain a 2-parameter constructor, an equals method, and a display method. In the interest of elegance and maintainability, don’t forget to have your subclass constructors call your superclass constructors when appropriate. The display method should print the values of all the instance variables within its class.

Provide a driver class that tests your three car classes. Your driver class should contain this main method:

public static void main(String[] args)

{

 NewCar new1 = new NewCar(8000.33, "silver");

 NewCar new2 = new NewCar(8000.33, "silver");

 if (new1.equals(new2))

 {

 new1.display();

 }

 UsedCar used1 = new UsedCar(2500, 100000);

 UsedCar used2 = new UsedCar(2500, 100000);

 if (used1.equals(used2))

 {

 used1.display();

 }

} // end main

Output:

price = $16,000.66, color = silver

price = $5,000.00, mileage = 100,000

4. [after §12.10] Game of Hearts ***:

This project is a big one, but hopefully the subject will be familiar. Your task is to write a program that plays the game of Hearts. Start with the prototype suggested in the text and enhance it until you get everything in the following UML class diagram.

[image: image4]
Card class:

Write the Card class first. Represent numbers and face-card values by integers ranging from 2 to 14, with 14 being the ace. Represent suits by integers as follows: 0 = clubs; 1 = diamonds; 2 = hearts; 3 = spades. Write a nice dislay method that uses switch statements to convert suit integers to the words, “clubs,” “diamonds,” and so on, and the numbers 11…14 to the words “Jack,” “Queen,” and so on. Use the display method to test this class.

GroupOfCards class:

Write the GroupOfCards next. The constructor’s parameter should establish the size of the card array. The getCurrentSize and getCard methods are trivial. The addCard method should increment currentSize after adding the input card to the end of the currently filled part of the cards array. The removeCard method should retrieve a reference to the card at index in the cards array, decrement the currentSize of the cards array, shift all array elements above index down by one place, and return the reference to the card originally at index. Use the display method to test this class.

Deck class:

The Deck class’s constructor is already provided in the text. To shuffle the deck, use a for loop that starts with unshuffled = getCurrentSize and steps down to one. In each iteration, use Math.random to pick an index in the unshuffled range, remove the card at that index, and then add it to the high end of the array. To deal a card, just remove the card at index = 0.

Trick class:

The Trick class is the next easiest one to write. The constructor’s parameter is the number of players, and the constructor calls the superclass’s constructor with one less than twice this number, to allow room in the first trick for undelt cards. The four get- methods are trivial. The isWinner method should return true unless the previous winning card is not null and the current card is not in the suit being played or its number is less than the winning card’s number. In the update method, if the current card is the winner, set winner equal to current player’s number and set the winning card equal to the current card. If the current card is a heart, set hearts to true. If the current card is the queen of spades, set queen to true.

Hand class:

The Hand class is the most difficult one to write, because it includes many of the rules and the strategy for playing the game. Since each player’s identification should remain constant after that player has been instantiated, make NUM a final instance variable, and initialize it in the Hand constructor with a value equal to the constructor’s first parameter value. The second parameter is the maximum number of cards the player will receive. Use it for the base-constructor call argument.
Use a selection sort strategy for the sort method. Start with unsorted = current size of the array, and step down to unsorted = 1. In each step, iterate through the unsorted part of the array, find the card having the greatest value of the expression, (13 * suit + number), and move this card to the high end of the index range. (If you display the result, you should see the cards sorted by suit from Ace of spaces down to 2 of clubs.)

Use the setShortest method to determine the best suit to play early in the game, to establish a void as quickly as possible. Start with shortest = clubs. If the number of diamonds is less than or equal to the number of clubs, change shortest to diamonds. If the number of spades is less than or equal to the shorter of those two, and your spades do not include Ace, King, or Queen, change shortest to spades. (Use the find method to see if you have an Ace, King, or Queen.)

The getShortest method is trivial.

The playACard method is the most difficult one, because it contains many of the rules and all of the strategy for winning. We do not know the best way to write this method, because we are not perfect hearts players ourselves, so this is just a suggestion that works reasonably well. All of the methods listed after this one (except for the count method) are intended to be used by this method to make this method as simple as possible. Look at them before trying to write this method.

If the current size of the trick is zero (you are the first hand), let a local integer called index equal the highest card in your shortest suit, but if this suit is a void let index equal the lowest card in any suit. If the current size of the trick is one less than the total number of players (you are the last hand), and if the trick does not have the queen of spades or any hearts, let index equal the value returned by the findHighest(int suit) method.
Next, deal with cases where you are the last hand and there are no bad cards in the trick. Since many of the helper methods return -1 if they fail, you can tighten the code in the playACard method by using an assignment to index inside an empty else-if statement, like this:
else if ((trick.getCurrentSize() == game.PLAYERS - 1)

 && !trick.getHearts() && !trick.getQueen()

 && (index = findLastHigh(suit)) >= 0);
Then, see what to do if you are a middle hand or the last hand with bad cards already in the trick:

else if ((index = findHighestBelow(winningCard)) >= 0);

else if ((index = findMiddleHigh(game, suit)) >= 0);
Then, see what to do if you are void, and able to discard a bad card or your own:
else if ((index = find(12, 3)) >= 0); // queen of Spades

else if ((index = find(14, 3)) >= 0); // Ace of Spaces

else if ((index = find(13, 3)) >= 0); // King of Spades

else if ((index = findHighest(2)) >= 0); // heart

else

{

 index = findHighest();

}
Then, remove the card with the resulting value of index, update the trick, update the game, and return the card selected.

Use the findLowest(int suit) method to find the lowest club dealt, to start the game. You’ll also need it in the rare situation when you have the lead, hearts have not been broken, and hearts are all you have left in your hand. Return the index of the lowest numbered card in the indicated suit. If you have no cards in that suit, return -1.

For the count method, return the number of cards in the suit indicated by the value of the parameter.

For the find method, return the index of the card having suit and number equal to the parameter values. If you can’t find that card, return -1.

Use the findHighest(int suit)method to find the highest card in your shortest suit to develop a void as fast as possible early in the game. Also use it to select the highest heart to discard on somebody else’s suit. Also use it when you are playing last and there are no bad cards in the trick. Also use as the starting point in the findHighestBelow method and the starting point in findMiddleHigh method. Return the index of the card having the highest numerical value in the suit indicated by the parameter value. If you have no cards in the suit, return -1.

Use the findLowest(Game game) method when leading, after you have developed your void. Return the lowest number in your hand, but not a heart until after hearts have been broken. If hearts have not been broken and all you have left is hearts, return -1.

Use the findLastHigh method to return the highest card in the suit led when there are no bad cards in the trick. If this card is the queen of spades, however, and you have another spade, return the highest card you have below your queen.

Use the findHighestBelow method when you are neither the first nor last player in a particular trick’s play sequence, and you are able to follow suit. Given a reference to the current winning card as the parameter value, search through the cards in your hand whose suit equals the winning card’s suit until you find the first one having a number less than the winning card’s number, and return the index of that card, but if the next card is a different suit, terminate the search, and return -1.

Use the findMiddleHigh method if the findHighestBelow method returned -1. Use your highest card in the suit, but if the suit is spades and the queen of spades has not been played yet, try to find a spade that is not higher than the Jack of spades.

Assuming you cannot follow suit and you no longer have the Queen, Ace, or King of spades and no longer have any hearts, use the findHighest() method to discard the highest remaining card in your hand, regardless of suit.

Game class:

The Game class is long but straightforward. Since the number of players should remain constant after a game has been instantiated, make PLAYERS a final instance variable, and initialize it in the Game constructor with a value equal to the constructor’s parameter value. This constructor should instantiate a Hand array with constructor parameter equal to the number of players. It should instantiate individual Hand objects for each player, with player identification number and maximum number of cards in a player’s hand as constructor arguments. It should also instantiate a Trick array with total number of tricks as the constructor argument, but it should not populate this array with any individual tricks.

The getNumberOfTricks, getHearts, and getQueenOfSpades methods are trivial.

Begin the playAGame method by shuffling the deck. Evaluate cardsLeft after all players get an equal number of cards (example: with five players cardsLeft = 2). Loop through all tricks and add one dealt card to each player in succession. Loop through all players and for each player call sort the setShortest to sort the hand and find that player’s best void opportunity. For that player, print the value of shortest and display that player’s hand to get an output like this (Math.random will make the values vary from one execution to the next):

Output – first part:

 player 0 shortest= 3

10 of spades

Ace of hearts

King of hearts

Jack of hearts

9 of hearts

2 of diamonds

Jack of clubs

10 of clubs

7 of clubs

6 of clubs

 player 1 shortest= 1

King of spades

6 of spades

Queen of hearts

4 of hearts

3 of hearts

9 of diamonds

7 of diamonds

Queen of clubs

5 of clubs

3 of clubs

 player 2 shortest= 0

Jack of spades

7 of spades

5 of spades

4 of spades

3 of spades

2 of hearts

Ace of diamonds

8 of diamonds

3 of diamonds

Ace of clubs

 player 3 shortest= 0

Queen of spades

8 of spades

10 of hearts

8 of hearts

6 of hearts

King of diamonds

Queen of diamonds

10 of diamonds

8 of clubs

4 of clubs

 player 4 shortest= 1

Ace of spades

2 of spades

7 of hearts

5 of hearts

Jack of diamonds

6 of diamonds

5 of diamonds

King of clubs

9 of clubs

2 of clubs

In this loop, also set playerNum equal to the identification number of the player having the lowest club.

Then loop through the total number of tricks. In each iteration, instantiate a new Trick, add it to the tricks array, and increment numberOfTricks. If it’s the first trick, set index equal to the index of the lowest club in the hand of the player having the lowest club, and set card equal to a reference to that card. Have that player remove that card, and update the trick. If it’s not the first trick, set card equal to the value returned by player.playACard. Display the player number and card value for this first play of the trick. Then loop through all remaining players, and for each such player, increment the player number, using % PLAYERS to count in a circle, assign the value returned by playACard to card, and display the player number and card value. After the loop through the remaining players is over, set the player number to the winner of the trick. Then, if it’s the first trick, deal the rest of the deck’s cards to this trick. For each such card, call updateHeartsAndQueen to record Hearts broken for the game, print “undelt card” and display that card.

After all the tricks are done, print each player’s number and score, using a call to computePoints. Recognizing again that Math.random will make the details of each execution different, the rest of the output for a game should look like this:

Output – second part:

player 4 2 of clubs

player 0 Jack of clubs

player 1 5 of clubs

player 2 Ace of clubs

player 3 8 of clubs

undelt card 9 of spades

undelt card 4 of diamonds

player 2 3 of spades

player 3 8 of spades

player 4 2 of spades

player 0 10 of spades

player 1 King of spades

player 1 9 of diamonds

player 2 8 of diamonds

player 3 King of diamonds

player 4 Jack of diamonds

player 0 2 of diamonds

player 3 4 of clubs

player 4 King of clubs

player 0 10 of clubs

player 1 Queen of clubs

Hearts is now broken

player 2 2 of hearts

player 4 6 of diamonds

player 0 Ace of hearts

player 1 7 of diamonds

player 2 3 of diamonds

player 3 Queen of diamonds

player 3 6 of hearts

player 4 5 of hearts

player 0 King of hearts

player 1 Queen of hearts

player 2 Ace of diamonds

player 0 6 of clubs

player 1 3 of clubs

player 2 Jack of spades

player 3 Queen of spades

player 4 9 of clubs

player 4 5 of diamonds

player 0 Jack of hearts

player 1 4 of hearts

player 2 7 of spades

player 3 10 of diamonds

player 3 8 of hearts

player 4 7 of hearts

player 0 9 of hearts

player 1 3 of hearts

player 2 5 of spades

player 0 7 of clubs

player 1 6 of spades

player 2 4 of spades

player 3 10 of hearts

player 4 Ace of spades

Player 0 score= 9

Player 1 score= 0

Player 2 score= 0

Player 3 score= 3

Player 4 score= 14

Play another game (y/n)?

In the updateHeartsAndQueen method, if the parameter card’s suit is hearts and hearts is still false, output “Hearts is now broken” and set hearts to true. If the parameter card is the queen of spaces set queenOfSpades to true.

In the computePoints method, loop through all tricks. If a particular trick’s winner equals this method’s parameter value, loop through all cards in that trick. If a card is the queen of spades, add 13 points. For each card that is a heart, add 1 point. Return the total number of points.

Gamma

+IMAX : int = 100

+ERROR : double = 1.0e-10

+logGamma(a : double) : double

+gamma(a : double) : double

+gamma(a : double, x : double) : double

+factorial(n : int) : double

+main(args : String[]) : void

IncompleteGamma

+incompleteGamma(a : double, t : double) : double

-series(a : double, t : double) : double

-continuousFraction(a : double, t : double) : double

+cumulativePoisson(m : int, x : double) : double

+cumulativeNormal(x : double) : double

+chiSquare(chiSquared : double, degreesFreedom : int) : double

+main(args : String[]) : void

IncompleteBeta

+incompleteBeta(a : double, b : double, x : double) : double

-continuousFraction(a : double, b : double, x : double) : double

+studentT(degFreedom : int, t : double) : double

+main(args : String[]) : void

Beta

+beta(a : double, b : double) : double

+beta(a : double, b : double, x : double) : double

+logBeta(a : double, b : double) : double

+main(args : String[]) : void

Binomial

+combinations(n : int, k : int) : double

+coefficients(n : int) : double[]

+probability(n : int, k : int, p double) : double

+cumulativeProbability(n : int, k : int, p : double) : double

+main(args : String[]) : void

a = 4.0

a = 2.0

a = 1.0

a = 0.5

Sample sessions:

Select incompleteGamma(g), cumPoisson(p), cumNormal(n), chiSquared(x): g

Enter number of sequential random processes: 4

Enter normalized time: 3

Completion probability = 0.35276811126498503

Select incompleteGamma(g), cumPoisson(p), cumNormal(n), chiSquared(x): p

Enter expected number of events: 4

Enter maximum number of events: 3

probability of no more than 3 events is 0.4334701202981951

Select incompleteGamma(g), cumPoisson(p), cumNormal(n), chiSquared(x): n

Enter normalized Gaussian argument, x: 2.0

Cumulative Normal = 0.9772498680498296

Select incompleteGamma(g), cumPoisson(p), cumNormal(n), chiSquared(x): x

Enter Chi Square value: 22.307

Enter degrees of freedom: 15

Chi-Square Probability = 0.10000318893899185

1

1

1

*

1

1

*

1

*

1

Game

+PLAYERS : int

-deck : Deck

-Hand[] players

-Trick[] tricks

-numberOfTricks : int = 0

-hearts : boolean = false

-queenOfSpades : boolean = false

+Game(numberOfPlayers : int)

+getNumberOfTricks() : int

+getHearts() : boolean

+getQueenOfSpades : boolean

+playAGame() : void

+updateHeartsAndQueen(

 card : Card) : void

-computePoints(

 playerNum : int) : int

Deck

+Deck()

+shuffle() : void

+dealCard() : Card

+TOTAL_CARDS : int=52

Card

-num : int

-suit : int

+Card(num : int, suit : int)

+getNum() : int

+getSuit() : int

+display() : void

Trick

-winner : int

-winningCard : Card

-hearts : boolean = false

-queen : boolean = false

+Trick(players : int)

+getWinner() : int

+getWinningCard() : Card

+getHearts() : boolean

+getQueen() : boolean

+update(playerNum : int,

 card : Card) : void

-isWinner(card : card) : boolean

GameDriver

+main(args : String[]) : void

Hand

+Hand(playerNum : int, numberOfCards : int)

+sort() : void

+setShortest() : void

+getShortest() : void

+playACard(game : Game, trick : trick) : Card

+findLowest(suit : int) : int

-findCount(suit : int) : int

-find(num : int, suit : int) : int

-findHighest(suit : int) : int

-findLowest(game : Game) : int

-findLastHigh(suit : int) : int

-findHighestBelow(winningCard : Card) : int

-findMiddleHigh(game : Game, suit : int) : int

-findHighest() : int

+NUM : int

-shortest : int = 0

-cards : Card[]

-currentSize : int = 0

+GroupOfCards(number : num)

+getCurrentSize() : int

+getCard(i : int) : Card

+addCard(card : Card) : void

+removeCard(index : int) : Card

+display() : void

GroupOfCards

� Based on algorithms in Section 6.2 in Press, et. al., Numerical Recipes in C, Cambridge University Press (1991).

� See, for example, Section 4.5 in Law and Kelton, Simulation Modeling & Analysis, McGraw-Hill (1982).

