Intro to OOP with Java, C. Thomas Wu

_ﬂ Chapter 3

Numerical Data

Animated Version

4% Ed Chapter 3 - 1

_ﬂ Objectives

After you have read and studied this chapter, you
should be able to

» Select proper types for numerical data.

« Write arithmetic expressions in Java.

« Evaluate arithmetic expressions using the precedence rules.

« Describe how the memory allocation works for objects and
primitive data values.

« Write mathematical expressions, using methods in the Math
class.

* Use the GregorianCalendar class in manipulating date
information such as year, month, and day.

+ Use the DecimalFormat class to format numerical data

« Convert input string values to numerical data

« Perform input and output by using System.in and System.out

j . Introduction

e Major Callenge:C=C +1

Il. Types of Primitive Data Values

j Manipulating Numbers

 In Java, to add two numbers x and y, we write
X + Yy
* But before the actual addition of the two numbers

takes place, we must declare their data type. If x
and y are integers, we write

int x, y;

or

int x;
int y;

= Java - » P —

©The McGraw-Hill Companies, Inc.

1.1 Variables

Intro to OOP with Java, C. Thomas Wu

_ﬂ Variables

* When the declaration is made, memory space is
allocated to store the values of x and y.

e xandy are called variables. A variable has three
properties:
— A memory location to store the value,
— Thetype of data stored in the memory location, and
— The name used to refer to the memory location.
e Sample variable declarations:
int x;
int v, w, y;

_ﬂ Numerical Data Types

* There are six numerical data types: byte, short, int, long,
float, and double.

« Sample variable declarations:

int i, 3. k;
float numberOne, numberTwo;
long bigInteger;

double bigNumber;

» At the time a variable is declared, it also can be initialized.
For example, we may initialize the integer variables count
and height to 10 and 34 as

int count = 10, height = 34;

OThe McGran:
reqred

j Data Type Precisions

The six data types differ in the precision of values
they can store in memory.

Data Default

Type Content Value' Minimum Value Maximum Value
byte Integer 4] -128 127

short | Integer o -32768 32767

int Integer 0 —2147483648 2147483647

long | Integer 0 —09223372036854775808 9223372036854775807
float | Real 00 —340282347E+38¢ 3.40282347E+38

double | Real 0.0 —1.79769313486231570E+208 | 1.79769313486231570E+208

& The McGraw-Hill Companies, Inc. Permission R e cl g

1.2 Constant

©The McGran il Companes In: Pamission i EIEEe
ey o rgrocion o dplay : - 4" Ed Chapter 3 -

j Constants

* We can change the value of a variable. If we
want the value to remain the same, we use a

constant.
final double PI = 3.14159;
final int MONTH_IN_YEAR = 12;
final short FARADAY_CONSTANT = 23060;

[| I

The reserved word These are constants,

final is used to also called named UIEEERE
literal constant.

declare constants. constant.

= NEYEY N PR——

©The McGraw-Hill Companies, Inc.

11.3 Primitive vs Reference

The MGraw-Hill C
ey for rgrocie

s T ‘Java € it 4" Ed Chapter 3 - 12

Intro to OOP with Java, C. Thomas Wu

j Primitive vs. Reference j Primitive Data Declaration and Assignments

» Numerical data are called primitive data types. iat firemumber, secondiumber: _

+ Objects are called reference data types, because CESEETE S A e merry. l
the contents are addresses that refer to memory
locations where the objects are actually stored. firstNumber

int firstNumber, secondNumber; secondNumber

firstNumber
B. Values are assigned
to variables.

= 234;
secondNumber = 87; ,
Code State of Memory

4" Ed Chapter 3 - 13

j Assigning Numerical Data j Assigning Objects
int mumber; Customer custoner; customer
customer = new Customer();

number = 237;
number = 35; number [35 | customer = new Customer();
Customer| Customer|
A. The variable /@D
is allocated in 'B i i
int number; ’—@ memory. l Custonergcustonery /. A-;lr;i;’?ercljaihrﬁnlesmory I

number = 237; B. The value 237 customer = new Customer();
is assigned 0 B. The reference to the
number = 35; ~—© umber. customer = new Customer(); new object is assigned
& {0 customer.
C. The value 35 ‘N) C. The reference to
overwrites the another object overwrites
previous value 237. the reference in customer.

Code State of Memory

Code State of Memory

4 Ed Chapter 3 -

S The McGra-Hill Comparie. . Permision
4" Ed Chapter 3 - 15 reqared o rerocicton o dplay

The McGran il Compries I Parmission
pare o reproducon c ispiay.

j Having Two References to a Single Object j

Customer clemens, twain; clemens
clemens = new Customer();
twain = clemens; twain E'_\
/QAD
. ® A veiews 1. Arithmetic Expression
Customer clemens, twain; " allocated in memory. I
clemens = new Customer();
. B. The reference to the
twain = clemens; new object is assigned
{0 clemens.
C. The reference in
clemens is assigned to
customer.

State of Memory

Code

4" Ed Chapter 3 - 18

] P\ /= 47 Ed Chapter 3 - 17 et o g

©The McGraw-Hill Companies, Inc.

Intro to OOP with Java, C. Thomas Wu

j Assignment Statements

» We assign a value to a variable using an
assignment statements.

e The syntax is
<variable> = <expression> ;
» Examples:

sum = firstNumber + secondNumber;
avg = (one + two + three) / 3.0;

4" Ed Chapter 3 - 19

j Arithmetic Operators

* The following table summarizes the arithmetic
operators available in Java.

Java Value
Operation Operator Example =10 y=7z=25]
Addition 17
Subtraction 1
Mudtiplication 0
Divighon 1 =

Modulo division
{remaindery

This is an integer division
where the fractional part
is truncated.

4" Ed Chapter 3 - 20

j Arithmetic Expression

» How does the expression
x + 3 *vy
get evaluated? Answer: x is added to 3*y.

* We determine the order of evaluation by following
the precedence rules.

» A higher precedence operator is evaluated before
the lower one. If two operators are the same
precedence, then they are evaluated left to right
for most operators.

ThecGran il Compmies I Pumisson [N .)

j Precedence Rules

Order Group Operator Rule

High Subexpression] Subexpressions are evaluated first. If
parentheses are nested, the innermost
subexpression is evaluated first. If two ar
more pairs of parentheses are on the same
level, then they are evaluated from left to

right.
Unary operator -+ Unary minuses and pluses are evaluated
second.
Multiplicative LRI Multiplicative operators are evaluated
operator third. If two or more multiplicative

Gperators are in an expression, then they
are evaluated from left to right.

Low Additive cperator | +, - Additive operators are evaluated last. If two
or more additive operators are in an
expressian, then they are evaluated from
left to right.

©The McGran il Companes In: Pamission i P .
e o reprodicton o dplay: e s 4 Ed Chapter 3 -

j Type Casting

» Ifxis afloat andy is an int, what will be the data type of

the following expression?
X *y
The answer is float.

* The above expression is called a mixed expression.

» The data types of the operands in mixed expressions are
converted based on the promotion rules. The promotion
rules ensure that the data type of the expression will be the
same as the data type of an operand whose type has the
highest precision.

©The McGraueHill Comperies nc. P b ‘ Chante .
T PR Java " e

©The McGraw-Hill Companies, Inc.

j Explicit Type Casting

« Instead of relying on the promotion rules, we can
make an explicit type cast by prefixing the operand
with the data type using the following syntax:

(<data type>) <expression>

e Example

(float) x / 3 Type case x to float and

P
then divide it by 3.

(int) (x / vy * 3.0) Type cast the result of the
<+——————— expression x /y *3.0 to
int.

The McGran-Hil C
ey for rgrocie

Intro to OOP with Java, C. Thomas Wu

_ﬂ Implicit Type Casting

e Consider the following expression:
double x = 3 + 5;

e The result of 3 + 5 is of type int. However,
since the variable x is double, the value 8
(type int) is promoted to 8.0 (type double)
before being assigned to x.

¢ Notice that it is a promotion. Demotion is not
allowed.

. A higher precision value
bl = 3.5 ; <+— cannot be assigned to a
lower precision variable.

©The McGraw-Hill Compirves, Inc. Permission - . .
Bl e Java ‘ e

_ﬂ Type Mismatch

e Suppose we want to input an age. Will this work?

int age;

age = JOptionPane.showInputDialog (
null, “Enter your age”);

¢ No.
String value cannot be assigned directly to an
int variable.

©The McGraw-Hill Companies. Inc. Permission " - BEIPR,

j Type Conversion

» Wrapper classes are used to perform necessary
type conversions, such as converting a String
object to a numerical value.

int age;
String inputStr;

inputStr = JOptionPane.showInputDialog (
null, “Enter your age”);

age = Integer.parselnt (inputStr);

ThecGran il Compmies I Pumisson [N N
by Java - T

j Other Conversion Methods

Class Method Example

Integer parselnt Integer.parselnt('25') — 25
Integer.parselnt('25.3") — error

Long parselong Long.parselong("25") — 25L
Long.parselong("25.3"'}) —» error

Float parseFloat Ploat.parseFloat(*25.3') — 25.3F

Float.parseFloat('ab3') — error

Double parseDouble Double.parseDouble(*25') — 25.0
Double.parseDouble{'ab3'} — error

j Sample Code Fragment

e fragment to input radius and output

area anc cumference

double radius, area, circumference;

radiusStr = JOptionPane.showInputDialog (
null,)i

radius = Double.parseDouble (radiusStr) ;

ompute area anc cumference
area = PI * radius * radius;
circumference = 2.0 * PI * radius;

JOptionPane.showMessageDialog (null,
+ radius + +
+ area + +
+ circumference) ;

@The McGraw-Hill Comparies, Inc. Permission v ~ - -

j Overloaded Operator +

e The plus operator + can mean two different operations,
depending on the context.

e <vall> + <val2> is an addition if both are numbers. If either
one of them is a String, the it is a concatenation.

« Evaluation goes from left to right.

output = “test” + 1 + 2; output = 1 + 2 + “test”;

@The McGraw-Hill Companies, Inc. Permission v A apter 3 - 30

©The McGraw-Hill Companies, Inc.

Intro to OOP with Java, C. Thomas Wu

j j The DecimalFormat Class

* Use a DecimalFormat object to format the numerical
output.

double num = 123.45789345;

DecimalFormat df = new DecimalFormat (“0.000");

IV. Useful Classes hree decimal places

System.out.print (num) ; ——— 123.45789345

System.out.print (df.format (num)) ;
123.458

4% Ed Chapter 3 - 31

j Standard Output j Standard Output Window

i - e A sample standard output window for displaying
» The showMessageDialog method is intended for multiple lines of text.

displaying short one-line messages, not for a
general-purpose output mechanism.

e Using System.out, we can output multiple lines of
text to the standard output window.

» The exact style of standard output window
depends on the Java tool you use.

©The MoGranHill Comparics I Permission F— ©The MoGrawHill Companies.Ine: Permission 4% Ed Chapter 3 - 34

j The print Method j The printin Method

* We use printin instead of print to skip a line.

* We use the print method to output a value to the standard
output window. int x = 123, y = x + x;
* The print method will continue printing from the end of the eAdasnnasi . Vi
currently displayed output. System.out.println(x);
System.out.print ()
* Example System.out.println(y);
System.out.println()i
System.out.print () g

& INNT\System32\ cmd.exe

He - af feine .

CWET | Sy stem) cmd e

©The McGraw-Hill Compirves, Inc. Permission , P ©The McGran-Hill Comparnes.Inc. Permission . S,

©The McGraw-Hill Companies, Inc.

Intro to OOP with Java, C. Thomas Wu

‘ Standard Input _ﬂ Common Scanner Methods:
* The technique of using System.in to input
data is called standard input. Method Example

» We can only input a single byte using
System.in directly.

nextByte() byte b = scanner.nextByte();
e To input primitive data values, we use the nextDouble() double d = scanner.nextDouble();
Scanner class (from Java 5_0)_ nextFloat() float f = scanner.nextFloat();

nextint() int i = scanner.nextint();

Scanner scanner; nextLong() long | = scanner.nextLong();

. nextShort() short s = scanner.nextShort();

scanner = Scanner.create(System.in); N
next() String str = scanner.next();

int num = scanner.nextInt();

- NEVE] . — R NETZED ; edcrars- 9

j The Math class j Some Math Class Methods

. .) Method Description
» The Math class in the java.lang package contains
. N, | b d to thi fa.
class methods for commonly used mathematical exp(a) e o S
funCtiOnS Iog(a) Natural logarithm (base e) of a.
floor(a) The largest whole number less than or
double num, x, y; equal to a.
max(a‘ b) The larger of a and b.
; Z / pow(a b) The number a raised to the power of b.
num = Math.sqrt(Math.max(x, y) + 12.4); Sqrt(a) DD EECAE
sin(a) The §ine of a. (Note: all grigonpmetric
functions are computed in radians)

* Table 3.6 in the textbook contains a list of class
methods defined in the Math class. Table 3.8 page 113 in the textbook contains a list of
class methods defined in the Math class.

©The MoGranHill Comparics I Permission B e N ©The MoGraw-Hill Companies Inc Permission’ B e on——

‘ Computing the Height of a Pole _ﬂ The GregorianCalendar Class

=) » Use a GregorianCalendar object to manipulate
! e - dsinasinp calendar information

. I L Jsin(a + B)sin(e —)

2K GregorianCalendar today, independenceDay;
today = new GregorianCalendar () ;
alphaRad = Math.toRadians (alpha); independenceDay
betaRad = Math.toRadians (beta) ; = new GregorianCalendar (1776, 6, 4);
month 6 means July; 0 means January

height = (distance * Math.sin(alphaRad) * Math.sin(betaRad))

/
Math.sqrt (Math.sin(alphaRad + betaRad) *
Math.sin(alphaRad - betaRad)) ;

= Java . memazrss== [Java :

©The McGraw-Hill Companies, Inc.

Intro to OOP with Java, C. Thomas Wu

j Retrieving Calendar Information

* This table shows the class constants for retrieving
different pieces of calendar information from Date.

Constant Description

YEAR The year portion of the calendar date

MONTH The month portion of the calendar date
DATE The day of the month

DAY_OF_MONTH Same as DATE

DAY_OF_YEAR The day number within the year
DAY_OF_MONTH The day number within the month
DAY_OF_WEEK The day of the week {Sun — 1, Mon — 2, etc)
WEEK_OF_YEAR The week number within the year
WEEK_OF_MONTH The week number within the month

AM_PM The indicator for A or P (AM — 0 and PM— 1)
HOUR The hour in 12-hour notation
HOUR_OF_DAY The hour in 24-hour notation

MINUTE The minute within the hour

oo [.Java " 4" Ed Chapter 3- 43

j Sample Calendar Retrieval

GregorianCalendar cal = new GregorianCalendar () ;
Assume today is Nov 9, 2003
System.out.print (“Today is ” +
(cal.get (Calendar .MONTH)+1) + “/” +
cal.get(Calendar.DATE) + “/" +
cal.get(Calendar.YEAR)) ;

Output | 7o3ay is 11/9/2003

4" Ed Chapter 3 - 44

V. Sample Development

©The McGran Hil Comparies . Permisson RN ~

j Problem Statement

¢ Problem statement:

Write a loan calculator program that computes
both monthly and total payments for a given loan
amount, annual interest rate, and loan period.

j Overall Plan

e Tasks:

— Get three input values: loanAmount,
interestRate, and loanPeriod.

— Compute the monthly and total payments.
— Output the results.

@ The McGraw-Hill Comparies, Inc. Perr B 4 Chapte 47
T PR Java " P —

©The McGraw-Hill Companies, Inc.

j Required Classes

JOpeionPane

LoanCalculator

ul ; PrintStream

The McGran-Hil C
ey for rgrocie

Intro to OOP with Java, C. Thomas Wu

_ﬂ Development Steps

* We will develop this program in four steps:

1. Start with code to accept three input values.

2. Add code to output the results.
3. Add code to compute the monthly and total

payments.
4. Update or modify code and tie up any loose
ends.
il NEWER v 47EdChaprer3-49

_ﬂ Step 1 Design

e Call the showInputDialog method to accept three

input values:

— loan amount,

— annual interest rate,

— loan period.

e Data types are
Input Format Data Type
loan amount dollars and cents double
annual interest rate in percent double
(e.g.,12.5)

loan period in years int

j Step 1 Code

Program source file is too big to list here. From now on, we ask
you to view the source files using your Java IDE.

Directory: Chapter3/Stepl

Source File: Ch3LoanCalculator.java

j Step 1 Test

* In the testing phase, we run the program
multiple times and verify that
— we can enter three input values

— we see the entered values echo-printed correctly
on the standard output window

The MoGran il Companics n: Pamission (RN
e o reprodicton o dplay: e _

j Step 2 Design

* We will consider the display format for out.
¢ Two possibilities are (among many others)

@The McGraw-Hill Comparies, Inc. Permission e c - 5:
Rl Java ’ PR a——

j Step 2 Code

Directory: Chapter3/Step2

Source File: Ch3LoanCalculator.java

©The McGraw-Hill Companies, Inc.

Intro to OOP with Java, C. Thomas Wu

_ﬂ Step 2 Test _ﬂ Step 3 Design

* We run the program numerous times with » The formula to compute the geometric
different types of input values and check the progression is the one we can use to
output display format. compute the monthly payment.
¢ Adjust the formatting as appropriate e The formula requires the loan period in
months and interest rate as monthly interest
rate.

* So we must convert the annual interest rate
(input value) to a monthly interest rate (per
the formula), and the loan period to the
number of monthly payments.

4" Ed Chapter 3 - 55

_ﬂ Step 3 Code _ﬂ Step 3 Test

» We run the program numerous times with
different types of input values and check the
results.

Qutput
Input (shown up to three decimal places only)
Directory: Chapter3/Step3 Annual Loan

Loan Interest Period Monthly Total
oo . Amount Rate (in_years) Payment Payment
Source File: Ch3LoanCalculator.java T o o 1o i
15000 7 15 134824 24268.363
10000 12 1 143471 17216.514

o 10 5 0.000 0.000

30 85 50 0.216 129.373

_ﬂ Step 4: Finalize

¢ We will add a program description

« We will format the monthly and total
payments to two decimal places using
DecimalFormat.

Directory: Chapter3/Step4

Source File: Ch3LoanCalculator.java

eTheMccr
ey for

©The McGraw-Hill Companies, Inc.

