(CS1102S Data Structures and Algorithms

Assignment 01:
Algorithm Analysis — Solution

1. Exercise 2.1 on page 50: Order the following functions by growth rate:
N, VN, N3 N2 NlogN, Nloglog N, Nlog? N, N log(N?), 2/N, 2V,
2N/2 37 N2log N, N3. Indicate which functions grow at the same rate
and show why this is the case.

Answer:

2/N < 37<+VN <N < NloglogN < NlogN < Nlog(N?)
< Nlog? N < N> < N2 < N%log N < N3 < 2V/2 < 9N

(1)

The only two functions that grow at the same rate are Nlog N and
N log(N?):

Nlog(N?) =2Nlog N = O(NlogN) (2)

For all other functions, the ordering is strict. In particular the following
functions do not grow at the same rate:

2N/ £ 9(2") , as: i 2 li 2 li =0
7O as: Jim ox = N SN T N 2N
(3)
Nlog? N = Nlog N]? # Nloglog N (4)
N1.5 NO.5
N'? % ©O(Nlog’?N),as lim ——— = lim —5—
N—oo Nlog" N N—oolog® N
BHN05 25N05
= 0-5 = lim 0.25 =00 (5)

im —— —_—
N—oco2log N+ N—oo logN

2. Excercises 2.22-2.24, pages 53-54:

(a) Show that X% can be computed with only eight multiplications.

Answer:

X062 _ x20 ., y42 (6)
X42 — X20 X X20 X X2

X200 _ x10, x10

X = XPxX°

X° = X?xX?xX

X? = XxX

(b) Write the fast exponentiation routine without recursion in Java. Sub-
mit your solution on paper. You don’t need to actually implement
the algorithm (optional).

Answer:

public static int pow(int base, int exp) {

int acc = 1;
int e = exp;
int b = base;

if (exp = 0) {
return 1;
}

while (e != 1) {
if (e% 2=

2
acc *= b;

1 A

return acc * b

}

To understand the algorithm, think of the binary representation of
exp:

oi
base®™ = basei %2

= Ibase™?' (7)

The index i ranges from 0 to [logy(N + 1)]. In every step the next
component base®? (from the right) is added to the accumulator.

The loop invariant is acc = base®™%2" . When the loop ends, the
accumulator equals base®P which is the desired result.

For example, in the case of base=3 and exp=>5 we have:
35 — 31*22+0*21+1*2°

31*22 * 30*21 * 31*20 (8)

Give a precise count on the number of multiplications used by the fast
exponentiation routine. (Hint: Consider the binary representation of
N.)

Answer: The fast exponentiation algorithm iterates over all bits
in the binary representation of exp. In every iteration, the value of
x is squared (one multiplication). If the current bit is 1, the value
of z is multiplied with the result (another multiplication). When
the number of bits is 1, n will be 1 or 0; in this case, no multipli-
cation is carried out. Thus, the total number of multiplications is:
{# bits in N} 4+ {# ’1" in N} — 2.

