
CS1102S Data Structures and Algorithms

Assignment 01:

Algorithm Analysis – Solution

1. Exercise 2.1 on page 50: Order the following functions by growth rate:
N ,

√
N , N1.5, N2, N log N , N log log N , N log2 N , N log(N2), 2/N , 2N ,

2N/2, 37, N2 log N , N3. Indicate which functions grow at the same rate
and show why this is the case.

Answer:

2/N < 37 <
√

N < N < N log log N < N log N ≤ N log(N2)

< N log2 N < N1.5 < N2 < N2 log N < N3 < 2N/2 < 2N

(1)

The only two functions that grow at the same rate are N log N and
N log(N2):

N log(N2) = 2N log N = Θ(N log N) (2)

For all other functions, the ordering is strict. In particular the following
functions do not grow at the same rate:

2N/2 6= Θ(2n) , as: lim
N→∞

2N/2

2N
= lim

N→∞

2N/2

2N/2 ∗ 2N/2
= lim

N→∞

1

2N/2
= 0

(3)
N log2 N = N [log N]2 6= N log log N (4)

N1.5 6= Θ(N log2 N) , as lim
N→∞

N1.5

N log2 N
= lim

N→∞

N0.5

log2 N

= lim
N→∞

0.5N−0.5

2 log N 1
N

= lim
N→∞

0.25N0.5

log N
= ∞ (5)

2. Excercises 2.22–2.24, pages 53-54:

(a) Show that X62 can be computed with only eight multiplications.

1

Answer:

X62 = X20 × X42 (6)

X42 = X20 × X20 × X2

X20 = X10 × X10

X10 = X5 × X5

X5 = X2 × X2 × X

X2 = X × X

(b) Write the fast exponentiation routine without recursion in Java. Sub-
mit your solution on paper. You don’t need to actually implement
the algorithm (optional).

Answer:

public static int pow(int base , int exp) {
int acc = 1 ;
int e = exp ;
int b = base ;

i f (exp == 0) {
return 1 ;

}

while (e != 1) {
i f (e % 2 == 1) {

acc ∗= b ;
}
b ∗= b ;
e /= 2 ;

}
return acc ∗ b ;

}

To understand the algorithm, think of the binary representation of
exp:

baseexp = base
P

i
ai2

i

= Πibaseai2
i

(7)

The index i ranges from 0 to ⌈log2(N + 1)⌉. In every step the next

component baseai2
i

(from the right) is added to the accumulator.

The loop invariant is acc = baseexp%2i

. When the loop ends, the
accumulator equals baseexp which is the desired result.

2

For example, in the case of base=3 and exp=5 we have:

35 = 31∗22+0∗21+1∗20

= 31∗22 ∗ 30∗21 ∗ 31∗20

(8)

(c) Give a precise count on the number of multiplications used by the fast
exponentiation routine. (Hint: Consider the binary representation of
N .)

Answer: The fast exponentiation algorithm iterates over all bits
in the binary representation of exp. In every iteration, the value of
x is squared (one multiplication). If the current bit is 1, the value
of x is multiplied with the result (another multiplication). When
the number of bits is 1, n will be 1 or 0; in this case, no multipli-
cation is carried out. Thus, the total number of multiplications is:
{# bits in N} + {# ’1’ in N} − 2.

3

