01 A—Intro

CS1102S: Data Structures and Algorithms

Martin Henz

January 13, 2010

Generated on Wednesday $13^{\text {th }}$ January, 2010, 09:22
(1) Getting Started
2) Overview of CS1102S

3 Algorithm Analysis
(1) Getting Started

- Goals
- Structure and Material of Module
(2) Overview of CS1102S
(3) Algorithm Analysis

Goal of CS1102S

In CS1102S, we will work on basic skills for software practice and theory:

- Data structures as building blocks of programs
- Algorithms as solutions to computational problems
- Path from program text to executing solution
- Tools for software design, development and maintenance
- Theory of computation; analysis of algorithms

Java

Students of CS1101S have already a solid foundation of basic data abstraction and functional (algorithmic) abstraction.
CS1102S thus focuses on:

- Specialized data structures as solutions to common computational problems
- Competency in Java (also for other SoC modules)
- Required background (paths, tools, theory) for software professionals

Structure of CS1102S

Wednesday lectures: 2 h ; Data structures, algorithms, paths
Friday lectures: 1 h ; Tools, theory, and other things
Tutorials: Discussing weekly assignments
Labs: Assisted sessions to practice software skills

IVLE Use in CS1102S

- Discussion forum
- Assignments
- Textbook: Weiss: Data Structures and Algorithm Analysis in Java, 2nd Edition
Available at COOP (under Central Library)

2 Overview of CS1102S

(3) Algorithm Analysis

Overview of CS1102S

- Algorithm analysis
- Lists, Stacks, Queues
- Trees
- Hashing
- Priority Queues
- Sorting
- Graph Algorithms

Algorithm Analysis

Runtime analysis
Characterize runtime of algorithms, not programs

Abstraction
Remove peculiarities of particular programming languages and computers

Lists, Stacks, Queues

Collections
Collections are data structures that contain a number of data items of a uniform type.

Access order
Lists, stacks and queues differ in the order in which the items are entered, accessed and removed.

Trees

Trees as data structures
Trees represent hierarchical information.
A particular use of trees
Search trees provide easy access to a sorted collection of items.

Hashing

Problem

Keep track of large number of items, so that we can find them fast.

Idea
Compute a key, that is used for entry, access and removal.

Priority Queues

Problem

Provide fast access to the smallest item in a collection.

> Idea
> Keep the items in a tree, where you guarantee that the smallest item is at the top.

Sorting

Problem
Sort a given number of items in increasing order.

Solutions
Insertion sort, Shellsort, Heapsort, Mergesort, Quicksort

Graph Algorithms

Problem

Represent data items that are connected in interesting ways.
Applications
Shortest path, network flow, minimum spanning tree, depth first search
(2) Overview of CS1102S

3 Algorithm Analysis

- Motivation
- Big Oh and Friends
- Examples

Getting Started
Overview of CS1102S
Algorithm Analysis

Motivation

Which functions grows faster?
$f(x)=1000 x$, or $g(x)=x^{2}$
Intuition
g grows faster than f because eventually it will return larger values.

No worries about constants
We would like to "overlook" when functions differ only by a constant factor.
Example: $f(x)=1000 x$ grows in the same way as $g(x)=2000 x$.

Big Oh!

Definition

$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$.

Example
$T(N)=1000 N$
$f(N)=N^{2}$
$T(N)=O(f(N))$

Notation
We often simply use the function definitions as in:

$$
1000 N=O\left(N^{2}\right)
$$

Some more definitions

> Big Oh
> $T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq \operatorname{cf}(N)$ when $N \geq n_{0}$.

Omega
$T(N)=\Omega(f(N))$ if there are positive constants c and n_{0} such that $T(N) \geq c f(N)$ when $N \geq n_{0}$.

Some more definitions

Theta
$T(N)=\Theta(f(N))$ if and only if $T(N)=O(f(N))$ and
$T(N)=\Omega(f(N))$.

Little oh

$T(N)=o(f(N))$ if for all constants c there exists an n_{0} such that $T(N)<c f(N)$ when $N>n_{0}$. This means: $T(N)=O(f(N))$ and $T(N) \neq \Theta(f(N))$.

Examples

- $1000=O(1)$
- $1=O(1000)$
- $1000=\Omega(1)$
- $1=\Omega(1000)$
- $1000=\Theta(1)$
- $1=\Theta(1000)$

Examples

- $1000 N=O(N)$
- $N=O(1000 N)$
- $1000 N=\Omega(N)$
- $N=\Omega(1000 N)$
- $1000 N=\Theta(N)$
- $N=\Theta(1000 N)$

Examples

- $N=O(N)$
- $N=O\left(N^{2}\right)$
- $N^{2}=\Omega(N)$
- $\log N=O(N)$

Rule 1

$$
\text { If } \begin{aligned}
& T_{1}(N)=O(f(N)) \text { and } T_{2}(N)=O(g(N)) \text {, then } \\
& \circ T_{1}(N)+T_{2}(N)=O(f(N)+g(N)) \\
& \circ \quad T_{1}(N) \cdot T_{2}(N)=O(f(N) \cdot g(N))
\end{aligned}
$$

Rule 2

If $T(N)$ is a polynomial of degree k, then $T(N)=\Theta\left(N^{k}\right)$.

Rule 3

$\log ^{k} N=O(N)$ for any constant k.

Matters of Style

- Writing $T(N)=O\left(3 N^{2}\right)$ is bad style. Why? Because $T(N)=O\left(N^{2}\right)$ holds. The constant 3 does not matter!
- Writing $T(N)=O\left(N^{2}+N\right)$ is bad style. Why? Because $T(N)=O\left(N^{2}\right)$ holds. The low-order term N does not matter!

This Week

- Thursday Crash Course:
- Languages and language processors
- Recursion and iteration
-
- Lists
- Friday lecture: Running time calculations (Section 2.4)
- Friday Crash Course: Loops

