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Motivation

Which functions grows faster?

f (x) = 1000x , or g(x) = x2

Intuition

g grows faster than f because eventually it will return larger
values.

No worries about constants

We would like to “overlook” when functions differ only by a
constant factor.
Example: f (x) = 1000x grows in the same way as
g(x) = 2000x .
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Big Oh!

Definition

T (N) = O(f (N)) if there are positive constants c and n0 such
that T (N) ≤ cf (N) when N ≥ n0.

Example

T (N) = 1000N
f (N) = N2

T (N) = O(f (N))

Notation

We often simply use the function definitions as in:

1000N = O(N2)
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Some more definitions

Big Oh

T (N) = O(f (N)) if there are positive constants c and n0 such
that T (N) ≤ cf (N) when N ≥ n0.

Omega

T (N) = Ω(f (N)) if there are positive constants c and n0 such
that T (N) ≥ cf (N) when N ≥ n0.
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Some more definitions

Theta

T (N) = Θ(f (N)) if and only if T (N) = O(f (N)) and
T (N) = Ω(f (N)).

Little oh

T (N) = o(f (N)) if for all constants c there exists an n0 such
that T (N) < cf (N) when N > n0. This means: T (N) = O(f (N))
and T (N) 6= Θ(f (N)).
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Examples

1000 = O(1)

N = Ω(1000N)

N = O(N2)
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Rule 1

If T1(N) = O(f (N)) and T2(N) = O(g(N)), then

T1(N) + T2(N) = O(f (N) + g(N))

T1(N) × T2(N) = O(f (N) × g(N))
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Rule 2

If T (N) is a polynomial of degree k , then T (N) = Θ(Nk ).
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Rule 3

logk N = O(N) for any constant k .
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Comparing the Growth of Functions

f grows slower than g

f (N) = o(g(N))
lim

N→∞

f (N)/g(N) = 0

f grows at the same rate as g

f (N) = Θ(g(N))

lim
N→∞

f (N)/g(N) = c 6= 0

f grows faster than g

g(N) = o(f (N))
lim

N→∞

f (N)/g(N) = ∞
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Download a file

After setting up the connection, which takes 3 seconds, the
download proceeds at a speed of 1.5Kbytes/second.

Large file sizes

We are interested in the download time T (N) where the file size
N grows larger and larger.

Big-Oh

As the file size grows, the initial time of 3 seconds becomes
negligible. Thus, T (N) = O(N).
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Sequential Computer

The computers we consider can do only one thing at a
time.
Contrast this with:

A computer cluster in SoC
The graphics card of your laptop
The internet

Since PCs have a very small number of CPUs, the
assumption of sequentiality is still “reasonable”.
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Everything costs the same

Simple operations all take constant time

Addition, multiplication, comparison, assignment etc

Integers have fixed-size

The size of integers does not grow as the problem size grows!
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A Simple Example: Diagonal Sum

/ / assumption : given a square mat r i x ‘ ‘ a r ray ’ ’
publ ic s t a t i c i n t diagonalSum ( i n t [ ] [ ] a r ray ) {

i n t len = ar ray . leng th ;
i n t sum = 0;
fo r ( i n t i =0; i < len ; i ++) {

sum += ar ray [ i ] [ i ] ;
}
return sum;

}
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Observations

The initialization of len and sum and return take one unit
each.
The line “ for ( int i=0; i < len; i++)” takes 1 unit for
“ int i=0”, N + 1 units for the tests and N units for the
increments.
To execute the line “sum += array[i ][ i ]” takes four time
units: one for each array access, one for the addition, and
one for the assignment.
As the size of the input matrix grows, the time to execute
the line “sum += array[i ][ i ]” once, remains 4 units.
The line is executed N times for a matrix of size N, thus it
takes 4N time units.
Overall:
T (N) = 3 + 1 + (N + 1) + N + 4 × N = 6N + 5 = O(N)
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Rule 1

for Loops

The running time of a for loop is at most the running time of the
statements inside the for loop times the number of iterations.

Example

fo r ( i n t j = 0 ; j < n ; j ++)
k++;

The runtime is 2 × N = O(N), considering that k++; contains
one addition and one assignment.
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Rule 2 (from Rule 1)

Nested loops

The running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of
the sizes of all the loops.

Example

fo r ( i n t i = 0 ; i < n ; i ++)
fo r ( i n t j = 0 ; j < n ; j ++)

k++;

The runtime is 2 × N × N = O(N2).
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Rule 3

Consecutive Statements

The running time of two consecutive statements is the sum of
the running times of each component statement.

Example

fo r ( i = 0 ; i < n ; i ++)
a [ i ] = 0 ;

fo r ( i = 0 ; i < n ; i ++)
fo r ( j = 0 ; j < n ; j ++)

a [ i ] += a [ j ] + i + j ;

The runtime is 2N + 6 × N × N = O(N2).
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Rule 4

if/else

The running time of if (condition) S1 else S2 is never more
than the running time of the condition plus the larger of the
running times of S1 and S2.

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 24



Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Example: Naive Fibonacci

publ ic s t a t i c i n t f i b ( i n t n ) {
i f ( n <= 1) {

return n ;
} else {

return f i b ( n−1) + f i b ( n−2);
}

}

Task

Find runtime T (N) where N is the the given integer.

Critical part: Else

fib (n−1) takes T (N − 1) units, and fib (n−2) takes T (N − 2)
units.

Overall
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Analysis

Overall

T (N) = T (N − 1) + T (N − 2) + 2

Compare with fib itself

fib(N) = fib(N − 1) + fib(N − 2)

Assessment

We can show that T (N) ≥ fib(N), and know that
fib(N) < (5/3)N . Thus

T (N) = O(2N)
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Search

Problem

Given an integer X and a sorted collection of integers
A0, A1, . . . , AN−1, find i such that Ai = X , or return i = −1 if X is
not in the collection.

Naive Solution

Scan the collection from i = 0 to N − 1 and stop when X is
found.
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Binary Search

publ ic s t a t i c i n t binarySearch ( i n t [ ] a , i n t x ) {
i n t low = 0 , high = a . leng th = 1;
while ( low <= high ) {

i n t mid = ( low + high ) / 2 ;
i f ( a [ mid ] < x )

low = mid + 1;
else i f ( a [ mid ] > x )

high = mid − 1;
else return mid ;

}
return −1;

}
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Analysis

The body of the while-loop is O(1).

How often do we go through the loop?

What happens to high - low in each iteration?

Answer: high - low is halved each time.

Example: Initially, high - low = 128. After each
iteration, high - low is at most 64, 32, 16, 8, 4, 2, 1,−1.
Overall, T (N) = O(log N)
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This Evening

Crash course 2: Loops and Arrays

Proceed straight to PL1 at 6:30
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Next Week

Crash course 3: Objects, Inheritance

Crash course 4: Generic Types

Wednesday lecture: Lists, Stacks, Queues (I)

Friday lecture: Java Collection Framework
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