
Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

01 B—Algorithm Analysis II

CS1102S: Data Structures and Algorithms

Martin Henz

January 15, 2010

Generated on Friday 15th January, 2010, 09:43

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 1

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

1 Review: Growth of Functions

2 Comparing Running Times

3 Model

4 Running Time Calculations

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 2

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

1 Review: Growth of Functions
Big Oh and Friends
Examples

2 Comparing Running Times

3 Model

4 Running Time Calculations

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 3

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Motivation

Which functions grows faster?

f (x) = 1000x , or g(x) = x2

Intuition

g grows faster than f because eventually it will return larger
values.

No worries about constants

We would like to “overlook” when functions differ only by a
constant factor.
Example: f (x) = 1000x grows in the same way as
g(x) = 2000x .

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 4

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Big Oh!

Definition

T (N) = O(f (N)) if there are positive constants c and n0 such
that T (N) ≤ cf (N) when N ≥ n0.

Example

T (N) = 1000N
f (N) = N2

T (N) = O(f (N))

Notation

We often simply use the function definitions as in:

1000N = O(N2)

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 5

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Some more definitions

Big Oh

T (N) = O(f (N)) if there are positive constants c and n0 such
that T (N) ≤ cf (N) when N ≥ n0.

Omega

T (N) = Ω(f (N)) if there are positive constants c and n0 such
that T (N) ≥ cf (N) when N ≥ n0.

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 6

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Some more definitions

Theta

T (N) = Θ(f (N)) if and only if T (N) = O(f (N)) and
T (N) = Ω(f (N)).

Little oh

T (N) = o(f (N)) if for all constants c there exists an n0 such
that T (N) < cf (N) when N > n0. This means: T (N) = O(f (N))
and T (N) 6= Θ(f (N)).

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 7

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Examples

1000 = O(1)

N = Ω(1000N)

N = O(N2)

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 8

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Rule 1

If T1(N) = O(f (N)) and T2(N) = O(g(N)), then

T1(N) + T2(N) = O(f (N) + g(N))

T1(N) × T2(N) = O(f (N) × g(N))

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 9

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Rule 2

If T (N) is a polynomial of degree k , then T (N) = Θ(Nk).

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 10

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Big Oh and Friends
Examples

Rule 3

logk N = O(N) for any constant k .

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 11

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

1 Review: Growth of Functions

2 Comparing Running Times

3 Model

4 Running Time Calculations

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 12

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Comparing the Growth of Functions

f grows slower than g

f (N) = o(g(N))
lim

N→∞

f (N)/g(N) = 0

f grows at the same rate as g

f (N) = Θ(g(N))

lim
N→∞

f (N)/g(N) = c 6= 0

f grows faster than g

g(N) = o(f (N))
lim

N→∞

f (N)/g(N) = ∞

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 13

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Example

Download a file

After setting up the connection, which takes 3 seconds, the
download proceeds at a speed of 1.5Kbytes/second.

Large file sizes

We are interested in the download time T (N) where the file size
N grows larger and larger.

Big-Oh

As the file size grows, the initial time of 3 seconds becomes
negligible. Thus, T (N) = O(N).

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 14

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

1 Review: Growth of Functions

2 Comparing Running Times

3 Model

4 Running Time Calculations

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 15

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Sequential Computer

The computers we consider can do only one thing at a
time.
Contrast this with:

A computer cluster in SoC
The graphics card of your laptop
The internet

Since PCs have a very small number of CPUs, the
assumption of sequentiality is still “reasonable”.

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 16

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

Everything costs the same

Simple operations all take constant time

Addition, multiplication, comparison, assignment etc

Integers have fixed-size

The size of integers does not grow as the problem size grows!

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 17

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

1 Review: Growth of Functions

2 Comparing Running Times

3 Model

4 Running Time Calculations
General Rules for Big-Oh
Logarithms in the Running Time

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 18

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

A Simple Example: Diagonal Sum

/ / assumption : given a square mat r i x ‘ ‘ a r ray ’ ’
publ ic s t a t i c i n t diagonalSum (i n t [] [] a r ray) {

i n t len = ar ray . leng th ;
i n t sum = 0;
fo r (i n t i =0; i < len ; i ++) {

sum += ar ray [i] [i] ;
}
return sum;

}

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 19

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Observations

The initialization of len and sum and return take one unit
each.
The line “ for (int i=0; i < len; i++)” takes 1 unit for
“ int i=0”, N + 1 units for the tests and N units for the
increments.
To execute the line “sum += array[i][i]” takes four time
units: one for each array access, one for the addition, and
one for the assignment.
As the size of the input matrix grows, the time to execute
the line “sum += array[i][i]” once, remains 4 units.
The line is executed N times for a matrix of size N, thus it
takes 4N time units.
Overall:
T (N) = 3 + 1 + (N + 1) + N + 4 × N = 6N + 5 = O(N)

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 20

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Rule 1

for Loops

The running time of a for loop is at most the running time of the
statements inside the for loop times the number of iterations.

Example

fo r (i n t j = 0 ; j < n ; j ++)
k++;

The runtime is 2 × N = O(N), considering that k++; contains
one addition and one assignment.

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 21

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Rule 2 (from Rule 1)

Nested loops

The running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of
the sizes of all the loops.

Example

fo r (i n t i = 0 ; i < n ; i ++)
fo r (i n t j = 0 ; j < n ; j ++)

k++;

The runtime is 2 × N × N = O(N2).

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 22

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Rule 3

Consecutive Statements

The running time of two consecutive statements is the sum of
the running times of each component statement.

Example

fo r (i = 0 ; i < n ; i ++)
a [i] = 0 ;

fo r (i = 0 ; i < n ; i ++)
fo r (j = 0 ; j < n ; j ++)

a [i] += a [j] + i + j ;

The runtime is 2N + 6 × N × N = O(N2).

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 23

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Rule 4

if/else

The running time of if (condition) S1 else S2 is never more
than the running time of the condition plus the larger of the
running times of S1 and S2.

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 24

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Example: Naive Fibonacci

publ ic s t a t i c i n t f i b (i n t n) {
i f (n <= 1) {

return n ;
} else {

return f i b (n−1) + f i b (n−2);
}

}

Task

Find runtime T (N) where N is the the given integer.

Critical part: Else

fib (n−1) takes T (N − 1) units, and fib (n−2) takes T (N − 2)
units.

Overall
CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 25

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Analysis

Overall

T (N) = T (N − 1) + T (N − 2) + 2

Compare with fib itself

fib(N) = fib(N − 1) + fib(N − 2)

Assessment

We can show that T (N) ≥ fib(N), and know that
fib(N) < (5/3)N . Thus

T (N) = O(2N)

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 26

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Search

Problem

Given an integer X and a sorted collection of integers
A0, A1, . . . , AN−1, find i such that Ai = X , or return i = −1 if X is
not in the collection.

Naive Solution

Scan the collection from i = 0 to N − 1 and stop when X is
found.

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 27

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Binary Search

publ ic s t a t i c i n t binarySearch (i n t [] a , i n t x) {
i n t low = 0 , high = a . leng th = 1;
while (low <= high) {

i n t mid = (low + high) / 2 ;
i f (a [mid] < x)

low = mid + 1;
else i f (a [mid] > x)

high = mid − 1;
else return mid ;

}
return −1;

}

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 28

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Analysis

The body of the while-loop is O(1).

How often do we go through the loop?

What happens to high - low in each iteration?

Answer: high - low is halved each time.

Example: Initially, high - low = 128. After each
iteration, high - low is at most 64, 32, 16, 8, 4, 2, 1,−1.
Overall, T (N) = O(log N)

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 29

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

This Evening

Crash course 2: Loops and Arrays

Proceed straight to PL1 at 6:30

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 30

Review: Growth of Functions
Comparing Running Times

Model
Running Time Calculations

General Rules for Big-Oh
Logarithms in the Running Time

Next Week

Crash course 3: Objects, Inheritance

Crash course 4: Generic Types

Wednesday lecture: Lists, Stacks, Queues (I)

Friday lecture: Java Collection Framework

CS1102S: Data Structures and Algorithms 01 B—Algorithm Analysis II 31

	Review: Growth of Functions
	Big Oh and Friends
	Examples

	Comparing Running Times
	Model
	Running Time Calculations
	General Rules for Big-Oh
	Logarithms in the Running Time

