01 B-Algorithm Analysis II

CS1102S: Data Structures and Algorithms

Martin Henz

January 15, 2010

Generated on Friday $15^{\text {th }}$ January, 2010, 09:43

1 Review: Growth of Functions

2 Comparing Running Times

3 Model
4) Running Time Calculations

1 Review: Growth of Functions

- Big Oh and Friends
- Examples

Motivation

Which functions grows faster?
$f(x)=1000 x$, or $g(x)=x^{2}$
Intuition
g grows faster than f because eventually it will return larger values.

No worries about constants
We would like to "overlook" when functions differ only by a constant factor.
Example: $f(x)=1000 x$ grows in the same way as $g(x)=2000 x$.

Big Oh!

Definition

$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$.

Example

$T(N)=1000 N$
$f(N)=N^{2}$
$T(N)=O(f(N))$

Notation

We often simply use the function definitions as in:

$$
1000 N=O\left(N^{2}\right)
$$

Some more definitions

Big Oh
$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$.

Omega
$T(N)=\Omega(f(N))$ if there are positive constants c and n_{0} such that $T(N) \geq c f(N)$ when $N \geq n_{0}$.

Some more definitions

Theta
$T(N)=\Theta(f(N))$ if and only if $T(N)=O(f(N))$ and
$T(N)=\Omega(f(N))$.

Little oh
$T(N)=o(f(N))$ if for all constants c there exists an n_{0} such that $T(N)<c f(N)$ when $N>n_{0}$. This means: $T(N)=O(f(N))$ and $T(N) \neq \Theta(f(N))$.

Examples

- $1000=O(1)$
- $N=\Omega(1000 N)$
- $N=O\left(N^{2}\right)$

Running Time Calculations

Rule 1

If $T_{1}(N)=O(f(N))$ and $T_{2}(N)=O(g(N))$, then

- $T_{1}(N)+T_{2}(N)=O(f(N)+g(N))$
- $T_{1}(N) \times T_{2}(N)=O(f(N) \times g(N))$

Rule 2

If $T(N)$ is a polynomial of degree k, then $T(N)=\Theta\left(N^{k}\right)$.

Comparing Running Times Model
Running Time Calculations

Big Oh and Friends
Examples

Rule 3

$\log ^{k} N=O(N)$ for any constant k.

2 Comparing Running Times

Comparing the Growth of Functions

f grows slower than g
$f(N)=o(g(N))$

$$
\lim _{N \rightarrow \infty} f(N) / g(N)=0
$$

f grows at the same rate as g
$f(N)=\Theta(g(N))$

$$
\lim _{N \rightarrow \infty} f(N) / g(N)=c \neq 0
$$

f grows faster than g
$g(N)=o(f(N))$

$$
\lim _{N \rightarrow \infty} f(N) / g(N)=\infty
$$

Example

Download a file
After setting up the connection, which takes 3 seconds, the download proceeds at a speed of $1.5 \mathrm{Kbytes} /$ second.

Large file sizes
We are interested in the download time $T(N)$ where the file size N grows larger and larger.

Big-Oh
As the file size grows, the initial time of 3 seconds becomes negligible. Thus, $T(N)=O(N)$.
(3) Model

Sequential Computer

- The computers we consider can do only one thing at a time.
- Contrast this with:
- A computer cluster in SoC
- The graphics card of your laptop
- The internet
- Since PCs have a very small number of CPUs, the assumption of sequentiality is still "reasonable".

Everything costs the same

Simple operations all take constant time
Addition, multiplication, comparison, assignment etc

Integers have fixed-size
The size of integers does not grow as the problem size grows!

Review: Growth of Functions

Comparing Running Times

Model
4) Running Time Calculations

- General Rules for Big-Oh
- Logarithms in the Running Time

A Simple Example: Diagonal Sum

```
// assumption: given a square matrix '‘array',
public static int diagonalSum(int[][] array) \{
    int len = array.length;
    int sum = 0;
    for (int \(\mathrm{i}=0\); \(\mathrm{i}<\) len; \(\mathrm{i}++\) ) \(\{\)
        sum += array[i][i];
    \}
    return sum;
\}
```


Observations

- The initialization of len and sum and return take one unit each.
- The line "for (int i=0; i <len; i++)" takes 1 unit for "int $\mathrm{i}=0$ ", $N+1$ units for the tests and N units for the increments.
- To execute the line "sum += array[i][i]" takes four time units: one for each array access, one for the addition, and one for the assignment.
- As the size of the input matrix grows, the time to execute the line "sum $+=$ array $[i][i]$ " once, remains 4 units.
- The line is executed N times for a matrix of size N, thus it takes $4 N$ time units.
- Overall:
$T(N)=3+1+(N+1)+N+4 \times N=6 N+5=O(N)$

Rule 1

for Loops
The running time of a for loop is at most the running time of the statements inside the for loop times the number of iterations.

Example
for(int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
k++;

The runtime is $2 \times N=O(N)$, considering that k++; contains one addition and one assignment.

Rule 2 (from Rule 1)

Nested loops
The running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

Example
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}+\mathrm{+})$ k++;

The runtime is $2 \times N \times N=O\left(N^{2}\right)$.

Running Time Calculations

Rule 3

Consecutive Statements
The running time of two consecutive statements is the sum of the running times of each component statement.

Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \text { a[i]=0; } \\
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \text { for }(j=0 ; j<n ; j++) \\
& \quad a[i]+=a[j]+i+j ;
\end{aligned}
$$

The runtime is $2 N+6 \times N \times N=O\left(N^{2}\right)$.

Running Time Calculations

Rule 4

> if/else
> The running time of if (condition) S1 else S2 is never more than the running time of the condition plus the larger of the running times of $S 1$ and S 2 .

Running Time Calculations

Example: Naive Fibonacci

```
public static int fib(int n) {
    if (n <= 1) {
    return n;
    } else {
    return fib(n-1) + fib(n-2);
    }
}
```


Task

Find runtime $T(N)$ where N is the the given integer.
Critical part: Else
fib ($\mathrm{n}-1$) takes $T(N-1)$ units, and fib ($\mathrm{n}-2$) takes $T(N-2)$ units.

Running Time Calculations

Analysis

Overall

$$
T(N)=T(N-1)+T(N-2)+2
$$

Compare with fib itself

$$
f i b(N)=f i b(N-1)+f i b(N-2)
$$

Assessment
We can show that $T(N) \geq f i b(N)$, and know that fib $(N)<(5 / 3)^{N}$. Thus

$$
T(N)=O\left(2^{N}\right)
$$

Running Time Calculations

Search

Problem

Given an integer X and a sorted collection of integers
$A_{0}, A_{1}, \ldots, A_{N-1}$, find i such that $A_{i}=X$, or return $i=-1$ if X is not in the collection.

Naive Solution
Scan the collection from $i=0$ to $N-1$ and stop when X is found.

Binary Search

```
public static int binarySearch(int [] a, int x) {
    int low = 0, high = a.length = 1;
    while (low <= high) {
        int mid = ( low + high ) / 2;
        if ( a[mid] < x )
        low = mid + 1;
        else if ( a[mid] > x )
        high = mid - 1;
        else return mid;
    }
    return -1;
}
```


Analysis

- The body of the while-loop is $O(1)$.
- How often do we go through the loop?
- What happens to high - low in each iteration?
- Answer: high - low is halved each time.
- Example: Initially, high - low $=128$. After each iteration, high - low is at most $64,32,16,8,4,2,1,-1$. Overall, $T(N)=O(\log N)$

This Evening

- Crash course 2: Loops and Arrays
- Proceed straight to PL1 at 6:30

Next Week

- Crash course 3: Objects, Inheritance
- Crash course 4: Generic Types
- Wednesday lecture: Lists, Stacks, Queues (I)
- Friday lecture: Java Collection Framework

