02 A Obiject-oriented Programming in Java

CS1102S: Data Structures and Algorithms

Martin Henz

January 20, 2010

Generated on Tuesday 19t January, 2010, 19:08

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



0 Classes and Objects

9 Data Types

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

0 Classes and Objects
@ Methods
@ Parameter Passing
@ |dentifiers

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Classes

A class is a data type that specifies the components of and
methods available for its instances.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Classes

A class is a data type that specifies the components of and
methods available for its instances.

Java is object-oriented. Classes can extend other classes and
thus inherit components and methods from other classes.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Classes

A class is a data type that specifies the components of and
methods available for its instances.

Java is object-oriented. Classes can extend other classes and
thus inherit components and methods from other classes.

Classes can implement interfaces.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Example Class

final public class MyClass
extends otherPackage.YourClass
implements somelnterface {

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Components of Classes

Component | Syntax Description
Subclassing | abstract/ final must/cannot be extended
Access public (or none) available outside of package
(or not)
Class name | class name Class name, same as file name
Extends extends name Name of super-class
Implements | implments list Implemented interfaces
Body enclosed in braces | Data fields and methods
for the class

CS1102S: Data Structures and Algorithms

02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Example Data Fields

public static final int UPPER_LIMIT ;

private int internal_counter;
protected transient int volume ;

static volatile int global_counter;

CS1102S: Data Structures and Algorithms

02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Data Access Modifiers

public :
private :
protected :
none :

available wherever the class is available

only available within the class

available in subclasses and within same package
available within the same package

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Data Use Modifiers

static : only one data field available for all instances
final : value cannot be modified (constant)

transient : value not persistent when storing object (not
used in this module)

volatile : value can be accessed by multiple threads
concurrently (not used in this module)

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Example

public static int max(int x, int y) {

if (x >y) {
return Xx;
} else {
return vy;

}

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

final : method cannot be overridden in a subclass

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

final : method cannot be overridden in a subclass
abstract : method must be overridden in every subclass

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

final : method cannot be overridden in a subclass
abstract : method must be overridden in every subclass
native : method body not written in Java

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

final : method cannot be overridden in a subclass
abstract : method must be overridden in every subclass

native : method body not written in Java
(how can that be?)

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

final : method cannot be overridden in a subclass
abstract : method must be overridden in every subclass

native : method body not written in Java
(how can that be?)

synchronized : method can be run by only one thread of
control at a time

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Method Use Modifiers

static : invoked on the class, not on the instances; can
only refer to static data fields

final : method cannot be overridden in a subclass
abstract : method must be overridden in every subclass

native : method body not written in Java
(how can that be?)

synchronized : method can be run by only one thread of
control at a time
(what are threads?)

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Invoking a Method

class IntUtil {

public void printLargest(int a, int b, int c) {
int largerAB = max(a, b);
[l int largerAB = IntUtil.max(a, b);
int largest = max(largerAB,c);
System.out. println (largest +
" is the largest.”);

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Parameter Passing

Java uses pass-by-value parameter passing.

public static void tryChanging(int a) {
a=1;
return ;

}

int b = 2;
tryChanging (b);
System.out. printin (b);

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Parameter Passing with Objects

public static void tryChanging (SomeObject obj) {
obj.someField = 1;
obj = new SomeObject();
obj.someField = 2;
return ;

}

SomeObject someObj = new SomeObject();
tryChanging (someObj);
System. out. println (someObj.someField);

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Methods
Parameter Passing
Identifiers

Classes and Objects

Identifiers

Java is a typed language.
All identifiers must be declared with a type.

float radius;
SomeObject obj;

CS1102S: Data Structures and Algorithms

02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

9 Data Types
@ Primitive Data Types

@ Arrays

@ Useful Java Classes
@ Exceptions

@ Text I/O

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Wrapper Types

Every primitive data type comes with a corresponding wrapper
type, representing objects that hold values of the primitive type.

int x = 9;

Integer intObject = new Integer(x);

System.out. println (”Value.is.” +
intObject.intValue ());

CS1102S: Data Structures and Algorithms

02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Primitive Data Types

Category Data Type | Wrapper Class
Boolean boolean Boolean
Character char Character
Integer byte Byte

short Short

int Integer

int Integer
Floating point | float Float

double Double

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Autoboxing and Auto-unboxing

Data Types

Integer intObject = 9;

int x = intObject + 1;

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

References

All identifiers that do not represent primitive data types are
references to objects.

A reference value null indicates that the identifier currently has
no object to refer to.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Overloading of Operators and Methods

Data Types

Operators such as +, * etc are “overloaded”; they can work on
multiple types and return corresponding values:

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Overloading of Operators and Methods

Data Types

Operators such as +, * etc are “overloaded”; they can work on
multiple types and return corresponding values:

5 + 5 returns the integer 10.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Overloading of Operators and Methods

Data Types

Operators such as +, * etc are “overloaded”; they can work on
multiple types and return corresponding values:

5 + 5 returns the integer 10.

5.0 + 5.0 returns the float 10.0.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Overloading of Operators and Methods

Data Types

Operators such as +, * etc are “overloaded”; they can work on
multiple types and return corresponding values:

5 + 5 returns the integer 10.
5.0 + 5.0 returns the float 10.0.

The method printin is also overloaded to accept int, String,
float, etc.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Type Promotion

If arithmetic operators are applied to numerical values of
different type, promotion happens according to
int — long — float — double

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Type Promotion

If arithmetic operators are applied to numerical values of
different type, promotion happens according to
int — long — float — double

Example: 10 + 5.0 results in float 15.0.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

String Conversion

The operator + (and only +) is compiled such that one
argument is converted to a string using toString () as soon as
the other argument is of type String.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

@ Array declaration

final int DAYSPERWEEK = 7;
double [] maxTemps = new double [DAYS_PER WEEK];

@ Array access

System.out. println ("Monday.value:.” +
maxTemps[1]);

@ Declaration with initializer list

double [] weekDayTemps
= {2.0, 71.5, 1.8, 75.0, 88.3};

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Multidimensional Arrays

@ Declaration

final int DAYSPERWEEK = 7;
final int WEEKSPERYEAR = 52;
double [] minTemps
= new double [DAYS PER WEEK][WEEKS PER YEAR];

@ Access: minTemps|[3][3]
@ Multidimensional initializer list

int [1[1 x = {{1,2,3},{4,5,6}};

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

The Object Class

A class A cannot extend another class B that directly or
indirectly extends A.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

The Object Class

A class A cannot extend another class B that directly or
indirectly extends A.

Classes that do not have extends implicitly extend Object.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

The Object Class

A class A cannot extend another class B that directly or
indirectly extends A.

Classes that do not have extends implicitly extend Object.

The methods of Object are available for all objects.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

The Object Class

A class A cannot extend another class B that directly or
indirectly extends A.

Classes that do not have extends implicitly extend Object.

The methods of Object are available for all objects.

Can you prove this theorem?

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types

Arrays

Useful Java Classes
Data Types Exceptions

Text I/0

Methods of Class Object

public boolean equals(Object obj) // equality of re

protected void finalize () // for garbage collection

What is garbage collection?

public int hashCode() // generate a code for hashin

What is hashing?
public String toString () // string representation

02 A Object-oriented Programming in Java

CS1102S: Data Structures and Algorithms



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Class String

Objects of class String are immutable sequences of characters.
Literal strings are instances of String.

public int compareTo(String s)
/I negative if the string comes after s
/[l 0 if equal and positive if before s
public String substring(int x,int vy)
/! take substring starting at position Xx
// until but excluding position y
public int indexOf(String s, int x)
/I return index of first occurrence of s
[/l start looking at position x

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Exceptions

@ Exceptional situations abandon the current execution
context, for example division by zero.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Exceptions

@ Exceptional situations abandon the current execution
context, for example division by zero.

What is “execution context”?

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Exceptions

@ Exceptional situations abandon the current execution
context, for example division by zero.

What is “execution context”?
@ An Exception object is associated with the situation.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Exceptions

@ Exceptional situations abandon the current execution
context, for example division by zero.

What is “execution context”?

@ An Exception object is associated with the situation.

@ A “catcher” of exceptions can be installed so that execution
can be resumed.

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Example

static int divide (int x, int y) {
return x / y;

int x = computeSomething (...);
int y computeSomethingElse (...);
showToUser(divide (x,y));

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Example

int x = computeSomething (...);
int y computeSomethingElse (...);
try {
showToUser(divide (x,y));
} catch (ArithmeticException e) {
showToUser(”"The.duration_must_be.” +
"at.least_one.day”);

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Throwing Exceptions

@ The programmer can define his/her own exceptions by
extending the class Exception.

@ The keyword throw can be used to generate such
user-defined exceptions.

throw new PercentageException (
"percentage .exceeds.100");

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Input using java. util .Scanner

Data Types

import java. util.Scanner;

int sum=0;
Scanner kblnput = new Scanner(System.in);
int nextValue = kblnput.nextint();
while (nextValue > 0) {
sum += nextValue;
nextValue = kblnput.nextint ();

}

kbinput.close ();

CS1102S: Data Structures and Algorithms 02 A Object-oriented Programming in Java



Primitive Data Types
Arrays

Useful Java Classes
Exceptions

Text I/0

Data Types

Output using System.out

System.out provides println and printf . Examples:

System.out. println ("The_answer.is.” + answer);

String name = "Jamie”;

int x =5,y = 6;

int sum = x + vy;

System.out. printf ("%s, %d.+.%d.=.%d",
name, X, Yy, sum);

CS1102S: Data Structures and Algorithms

02 A Object-oriented Programming in Java






	Classes and Objects
	Methods
	Parameter Passing
	Identifiers

	Data Types
	Primitive Data Types
	Arrays
	Useful Java Classes
	Exceptions
	Text I/O


