
Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

04 B: Lists, Stacks, and Queues IV; Trees I

CS1102S: Data Structures and Algorithms

Martin Henz

February 5, 2010

Generated on Thursday 4th February, 2010, 23:00

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 1

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

1 Review: The Stack ADT

2 The Queue ADT

3 Trees

4 Puzzlers

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 2

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Stack Model
Implementation of Stacks

1 Review: The Stack ADT
Stack Model
Implementation of Stacks

2 The Queue ADT

3 Trees

4 Puzzlers

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 3

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Stack Model
Implementation of Stacks

Motivation

Purpose of stacks

Collections that serve as intermediate storage of data items

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 4

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Stack Model
Implementation of Stacks

Stack Model

Stack access

Only the top element of a stack is accessible through top and
pop operations

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 5

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Stack Model
Implementation of Stacks

Stack Model

Stack access

Only the top element of a stack is accessible through top and
pop operations

Stack discipline

Last in—first out: LIFO

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 6

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Stack Model
Implementation of Stacks

Stack Model

Stack access

Only the top element of a stack is accessible through top and
pop operations

Stack discipline

Last in—first out: LIFO

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 7

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Stack Model
Implementation of Stacks

Implementation of Stacks

Possible based on either ArrayList or LinkedList

Often Lists are used directly, for example by using a List
and always using the index 0

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 8

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

1 Review: The Stack ADT

2 The Queue ADT
Motivation
Motivation
Implementation of Queues

3 Trees

4 Puzzlers

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 9

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Motivation

Purpose of queues

Collections that serve as intermediate storage of data items

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 10

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Queue Model

Stack discipline

First in—first out: FIFO

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 11

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Implementation of Queues using LinkedList

class LinkedListQueue<E> extends L inkedL is t <E> {
publ ic boolean empty () {

return s ize () == 0; }
publ ic void enqueue (E i tem) {

add (item , 0) ; return i tem ; }
publ ic E dequeue () {

i f (empty ())
throw new EmptyQueueException () ;

else return remove (s ize () −1) ; } }

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 12

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Implementation of Queues using LinkedList

class LinkedListQueue<E> extends L inkedL is t <E> {
publ ic boolean empty () {

return s ize () == 0; }
publ ic void enqueue (E i tem) {

add (item , 0) ; return i tem ; }
publ ic E dequeue () {

i f (empty ())
throw new EmptyQueueException () ;

else return remove (s ize () −1) ; } }

Why does dequeue() run in O(1)?

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 13

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Implementation of Queues using LinkedList

class LinkedListQueue<E> extends L inkedL is t <E> {
publ ic boolean empty () {

return s ize () == 0; }
publ ic void enqueue (E i tem) {

add (item , 0) ; return i tem ; }
publ ic E dequeue () {

i f (empty ())
throw new EmptyQueueException () ;

else return remove (s ize () −1) ; } }

Why does dequeue() run in O(1)?

See
API Specification.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 14

http://java.sun.com/javase/6/docs/api/java/util/LinkedList.html#get(int)

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Implementation of Queues using Arrays

General idea

Keep items in array similar to ArrayList

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 15

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Implementation of Queues using Arrays

General idea

Keep items in array similar to ArrayList

Access

Keep a marker for adding items back and for removing items
front

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 16

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Motivation
Motivation
Implementation of Queues

Implementation of Queues using Arrays

General idea

Keep items in array similar to ArrayList

Access

Keep a marker for adding items back and for removing items
front

Optimization

Wrap back and front around when end of array is reached

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 17

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

1 Review: The Stack ADT

2 The Queue ADT

3 Trees
Preliminaries
Binary Trees

4 Puzzlers

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 18

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Motivation

Trees in computer science

Trees are ubiquitous in CS, covering operating systems,
computer graphics, data bases, etc.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 19

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Motivation

Trees in computer science

Trees are ubiquitous in CS, covering operating systems,
computer graphics, data bases, etc.

Trees as data structures

Provide O(log N) search operations

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 20

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Motivation

Trees in computer science

Trees are ubiquitous in CS, covering operating systems,
computer graphics, data bases, etc.

Trees as data structures

Provide O(log N) search operations

Heaps

Serve as basis for other efficient data structures, such as heaps

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 21

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Motivation

Trees in computer science

Trees are ubiquitous in CS, covering operating systems,
computer graphics, data bases, etc.

Trees as data structures

Provide O(log N) search operations

Heaps

Serve as basis for other efficient data structures, such as heaps

Trees in Java API

Covered by API classes TreeSet and TreeMap

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 22

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Definitions

Tree

A tree is a collection of nodes. Non-empty trees have a
distinguished node r , called root, and zero or more nonempty
(sub)trees T1, T2, . . . , Tk , each of whose roots are connected by
a directed edge from r .

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 23

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Definitions

Tree

A tree is a collection of nodes. Non-empty trees have a
distinguished node r , called root, and zero or more nonempty
(sub)trees T1, T2, . . . , Tk , each of whose roots are connected by
a directed edge from r .

Parent and child

The root of each subtree is called a child of r , and r is the
parent of each subtree root.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 24

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 25

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Leaf

Nodes with no children are called leaves.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 26

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Leaf

Nodes with no children are called leaves.

Sibling

Nodes the same parents are called siblings.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 27

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Path

A path from node n1 to nk id defined as a sequence of nodes
n1, n2, . . . , nk such that ni is the parent of ni+1 for 1 ≤ i < k .

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 28

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Path

A path from node n1 to nk id defined as a sequence of nodes
n1, n2, . . . , nk such that ni is the parent of ni+1 for 1 ≤ i < k .

Length of Path

The length of a path is the number of edges on the path,
namely k − 1.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 29

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Paths of length 0

There is a path of length 0 from every node to itself.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 30

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Paths of length 0

There is a path of length 0 from every node to itself.

Number of paths

There is exactly one path from the root to each node.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 31

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Depth

The depth of node ni is the length of the unique path from the
root to ni .

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 32

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Height

The height of ni is the length of the longest path from ni to a
leaf.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 33

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Height

The height of ni is the length of the longest path from ni to a
leaf.

Height of a tree

The height of a tree is equal to the height of the root.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 34

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Ancestor and descendant

If there is a path from n1 to n2, then n1 is an ancestor of n2, and
n2 is a descendant of n1.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 35

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example and More Definitions

Ancestor and descendant

If there is a path from n1 to n2, then n1 is an ancestor of n2, and
n2 is a descendant of n1.

Proper Ancestor and proper descendant

If n1 6= n2, and n1 is an ancestor of n2, then n1 is a proper
ancestor of n2 and n2 is a proper descendant of n1.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 36

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Implementation

First idea

In each node, keep its data, and a reference to each child

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 37

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Implementation

First idea

In each node, keep its data, and a reference to each child

Problem

We don’t know how many children a node may have (can also
change, later)

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 38

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Implementation

First idea

In each node, keep its data, and a reference to each child

Problem

We don’t know how many children a node may have (can also
change, later)

Solution

Keep children of each node in a linked list of tree nodes

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 39

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Implementation

Node data type

class TreeNode<Any> {
Any element ;
TreeNode<Any> f i r s t C h i l d ;
TreeNode<Any> n e x t S i b l i n g ;

}

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 40

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Tree Traversal

Common use of trees

File and folder structure in Windows and Unix: folder are nodes,
ordinary files are leaf nodes

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 41

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Tree Traversal

Common use of trees

File and folder structure in Windows and Unix: folder are nodes,
ordinary files are leaf nodes

Common tasks involving files and folders

List all files in a folder (and its subfolders)

Compute the size of a folder (including all subfolders)

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 42

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 43

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Algorithm for File Listing

pr iva te void l i s t A l l (i n t depth) {
printName (depth) ; / / p r i n t name of ob jec t

i f (i s D i r e c t o r y ())
fo r each f i l e c i n th i s d i r e c t o r y

c . l i s t A l l (depth + 1) ;
}
publ ic void l i s t A l l () {

l i s t A l l (0) ;
}

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 44

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example

/usr
mark

book
ch1.r
ch2.r
ch3.r

course
cop3530

...
CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 45

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Reflection

What is going on?

Work (print file name) is done at each node before the children
of the node are visited

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 46

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Reflection

What is going on?

Work (print file name) is done at each node before the children
of the node are visited

Tree traversal

If the work at each node is done before the children are visited,
we talk about preorder traversal

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 47

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Algorithm for File Size Calculation

publ ic i n t s ize () {
i n t t o t a l S i z e = s i zeO fTh i sF i l e () ;
i f (i s D i r e c t o r y ())

fo r each f i l e c i n th i s d i r e c t o r y
t o t a l S i z e += c . s ize () ;

p r i n t (t o t a l S i z e) ; / / p r i n t s i ze o f ob jec t
return t o t a l S i z e ;

}

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 48

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example

ch1.r 3
ch2.r 2
ch3.r 4

book 10
...

mark 30
...

/usr 72

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 49

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Reflection

What is going on?

Work (print file size) is done at each node after the children of
the node are visited

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 50

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Reflection

What is going on?

Work (print file size) is done at each node after the children of
the node are visited

Tree traversal

If the work at each node is done after the children are visited,
we talk about postorder traversal

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 51

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Binary Trees

Definition

A binary tree is a tree in which no node can have more than two
children.

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 52

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Implementation

class BinaryNode {
/ / access ib le by other package rou t i nes
Object element ; / / The data i n the node
BinaryNode l e f t ; / / L e f t c h i l d
BinaryNode r i g h t ; / / R ight c h i l d

}

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 53

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example: Expression Trees

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 54

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Preliminaries
Binary Trees

Example: Degenerate Binary Tree

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 55

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

1 Review: The Stack ADT

2 The Queue ADT

3 Trees

4 Puzzlers
Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 56

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

Puzzler: Animal Farm

public class AnimalFarm {
public static void main(String[] args) {

final String pig = "length: 10";
final String dog = "length: " + pig.length();
System.out.println("Animals are equal: "

+ pig == dog);
}

}

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 57

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

Solution

Operator + has higher precedence than ==.
Thus

System.out.println("Animals are equal: "
+ pig == dog);

means

System.out.println(
("Animals are equal: " + pig) == dog

);

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 58

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

A Quick Fix

System.out.println("Animals are equal: "
+ (pig == dog));

What will be printed?

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 59

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

What does == mean?

Primitive Data Types

For primitive data types, == implements literal equality. It tests
whether the values are identical (to the bit).

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 60

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

New Puzzler: Generic Drugs

publ ic class L inkedL is t <E> {
pr iva te Node<E> head = nu l l ;
pr iva te class Node<E> {

E value ;
Node<E> next ;
/ / cons t r uc to r l i n k s the node as new head
Node(E value) {

th i s . value = value ;
th i s . next = head ;
head = th i s ;

}
}

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 61

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

New Puzzler: Generic Drugs

publ ic void add (E e) {
new Node<E>(e) ; / / L ink node as new head

}
publ ic void dump () {

fo r (Node<E> n = head ; n != nu l l ; n = n . next)
System . out . p r i n t (n . value + ” ”) ;

}
publ ic s t a t i c void main (S t r i n g [] args) {

L inkedL is t <St r ing > l i s t
= new L inkedL is t <St r ing > () ;
l i s t . add (” wor ld ”) ;
l i s t . add (” He l lo ”) ;
l i s t . dump () ;

} }

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 62

Review: The Stack ADT
The Queue ADT

Trees
Puzzlers

Solution Puzzler “Animal Farm”
New Puzzler: “Generic Drugs”

Next Week

Monday:
Lab: Lab tasks on lists, queues, stacks
Assignment 3 due

Wednesday: Lecture on Binary Trees

Thursday: Tutorial on Assignment 3

Friday: Midterm 1 on first 100 pages

CS1102S: Data Structures and Algorithms 04 B: Lists, Stacks, and Queues IV; Trees I 63

	Review: The Stack ADT
	Stack Model
	Implementation of Stacks

	The Queue ADT
	Motivation
	Motivation
	Implementation of Queues

	Trees
	Preliminaries
	Binary Trees

	Puzzlers
	Solution Puzzler ``Animal Farm''
	New Puzzler: ``Generic Drugs''

