
Review: Trees
Binary Search Trees

Sets in Java Collections API

05 A: Trees II

CS1102S: Data Structures and Algorithms

Martin Henz

February 10, 2010

Generated on Wednesday 10th February, 2010, 10:55

CS1102S: Data Structures and Algorithms 05 A: Trees II 1

Review: Trees
Binary Search Trees

Sets in Java Collections API

1 Review: Trees

2 Binary Search Trees

3 Sets in Java Collections API

CS1102S: Data Structures and Algorithms 05 A: Trees II 2

Review: Trees
Binary Search Trees

Sets in Java Collections API

1 Review: Trees

2 Binary Search Trees

3 Sets in Java Collections API

CS1102S: Data Structures and Algorithms 05 A: Trees II 3

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation

Trees in computer science

Trees are ubiquitous in CS, covering operating systems,
computer graphics, data bases, etc.

Trees as data structures

Provide O(log N) search operations

Heaps

Serve as basis for other efficient data structures, such as heaps

CS1102S: Data Structures and Algorithms 05 A: Trees II 4

Review: Trees
Binary Search Trees

Sets in Java Collections API

Example

CS1102S: Data Structures and Algorithms 05 A: Trees II 5

Review: Trees
Binary Search Trees

Sets in Java Collections API

Binary Trees

Definition

A binary tree is a tree in which no node can have more than two
children.

CS1102S: Data Structures and Algorithms 05 A: Trees II 6

Review: Trees
Binary Search Trees

Sets in Java Collections API

Implementation

ClassBinaryNode {
/ / access ib le by other package rou t i nes
Object element ; / / The data i n the node
BinaryNode l e f t ; / / L e f t c h i l d
BinaryNode r i g h t ; / / R ight c h i l d

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 7

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

1 Review: Trees

2 Binary Search Trees
Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

3 Sets in Java Collections API

CS1102S: Data Structures and Algorithms 05 A: Trees II 8

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Motivation

Setup

We would like to quickly find out if a given data item is included
in a collection.

Example

In an underground carpark, a system captures the licence plate
numbers of incoming and outgoing cars.
Problem: Find out if a particular car is in the carpark.

CS1102S: Data Structures and Algorithms 05 A: Trees II 9

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Operations for Sets

in ter face Set<T> {
public void add (T x) ;
/ / same as i n s e r t (T x) ;

public void remove (T x) ;
public boolean conta ins (T x) ;
. . .

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 10

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
Therefore, search takes linear time.

How to avoid linear access?

For efficient data structures, we often exploit properties of data
items.

CS1102S: Data Structures and Algorithms 05 A: Trees II 11

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert (i) sets inCarPark[i] to true

remove(i) sets inCarPark[i] to false

contains(i) returns inCarPark[i] .

CS1102S: Data Structures and Algorithms 05 A: Trees II 12

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

The Sad Truth

Not all data items are small integers!

In Singapore, license plate numbers start with 2–3 letters,
followed by a number, followed by another letter.

But: one property remains

We can compare two license plate numbers, for example
lexicographically.

CS1102S: Data Structures and Algorithms 05 A: Trees II 13

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Lexicographic Ordering on License Plate Numbers

First compare the first letters as in a dictionary
e.g. “SBX...” < “SCY...”, “SA...” < “SAB...”

If the letters are the same, use the following number e.g.
“SBX 100” < “SBX 101”

If the letters and numbers are the same, use the final letter
e.g. “SBX 101 P” < “SBX 101 Q”

CS1102S: Data Structures and Algorithms 05 A: Trees II 14

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

The Comparable Interface

API Interface Comparable

in ter face Comparable<T> {
public i n t compareTo (T o) ;

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 15

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Mathematics of Comparable

Ordering

Instances of the Comparable interface are subject to a total
ordering. For any two elements x and y , we know whether:

x smaller then y : x.compareTo(y) returns negative int

x smaller then y : x.compareTo(y) returns positive int

x equals y : x.compareTo(y) returns 0

CS1102S: Data Structures and Algorithms 05 A: Trees II 16

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Excursion: Bounded Types

Type variables

allow the programmer to refer to a type at multiple places.

Example

public s t a t i c <Any> SchemeList<Any>
conca tA l l (SchemeList<SchemeList<Any>>

a L i s t L i s t) {
. . .

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 17

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Excursion: Bounded Types

Wildcard Types

Sometimes, a generic type is completely unrestricted. We use
? without having to declare it.

Example

public s t a t i c i n t
i t e r a t i v e L e n g t h (SchemeList<?> a L i s t) {
i n t acc = 0;
while (! a L i s t . i s N i l ()) {

a L i s t = a L i s t . cdr () ;
acc ++; }

return acc ; }

CS1102S: Data Structures and Algorithms 05 A: Trees II 18

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Excursion: Bounded Types

Upper bounds for types

Sometimes, a type variable must be bounded to restrict the
types that it stands for to a class and all its sub-classes.

Example

in ter face Co l l ec t i on <E> { . . .
boolean add (E e) ;
boolean addAl l (Co l l ec t i on <? extends E> c) ;
. . .

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 19

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Excursion: Bounded Types

interface Comparable

in ter face Comparable<T> {
public i n t compareTo (T o) ;

}

Invariance of generic types

If Lion is a subtype of Animal, then Cage<Lion> is not a
subtype of Cage<Animal>.

CS1102S: Data Structures and Algorithms 05 A: Trees II 20

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Excursion: Bounded Types

Invariance of generic types

If Lion is a subtype of Animal, then Cage<Lion> is not a
subtype of Cage<Animal>.

Invariance of Comparable

Therefore, if Animal implements Comparable<Animal>, Lion
does not necessarily implement Comparable<Lion>.

Lower bounds for Comparable

We want to allow Lion to implement Comparable<T> as long
as T is a super type of Lion.

CS1102S: Data Structures and Algorithms 05 A: Trees II 21

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Excursion: Bounded Types

Lower bounds for Comparable

We want to allow Lion to implement Comparable<T> as long
as T is a super type of Lion.

class BinarySearchTree
<Any extends Comparable<? super Any>>

{ . . . }

CS1102S: Data Structures and Algorithms 05 A: Trees II 22

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Binary Search

Setup

Keep items in a tree. Each node holds one data item.

Idea

The left subtree of a node V only contains items smaller than V
and the right subtree only contains items larger than V .

Search

can then proceed top-down, starting at the root. If the search
item is smaller than the item at the root, go down to the left, and
if it is larger, go right.

CS1102S: Data Structures and Algorithms 05 A: Trees II 23

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Example

Both trees are binary trees, but only the left tree is a search
tree.

CS1102S: Data Structures and Algorithms 05 A: Trees II 24

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Implementation

private s t a t i c class BinaryNode<AnyType>{
AnyType element ;
BinaryNode<AnyType> l e f t ;
BinaryNode<AnyType> r i g h t ;
BinaryNode (AnyType theElement) {

th is (theElement , null , nul l) ; }
BinaryNode (AnyType theElement ,

BinaryNode<AnyType> l t ,
BinaryNode<AnyType> r t) {

element = theElement ;
l e f t = l t ; r i g h t = r t ; }

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 25

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Implementation

public class
BinarySearchTree<AnyType extends

Comparable<? super AnyType>> {
private s t a t i c class BinaryNode<AnyType> { . . }
private BinaryNode<AnyType> r oo t ;
public BinarySearchTree () {

r oo t = nul l ; }
public void makeEmpty () {

r oo t = nul l ; }
public boolean isEmpty () {

return r oo t == nul l ; }
. . .

}

CS1102S: Data Structures and Algorithms 05 A: Trees II 26

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Implementation

public class
BinarySearchTree<AnyType extends

Comparable<? super AnyType>> {
. . .
public boolean conta ins (AnyType x) {

return conta ins (x , roo t) ; }
public AnyType f indMin () { / / f indMax s i m i l a r

i f (isEmpty ()) throw new Underf lowExcept ion ()
return f i ndMin (roo t) . element ; }

public void i n s e r t (AnyType x) {
r oo t = i n s e r t (x , r oo t) ; }

public void remove (AnyType x) {
r oo t = remove (x , roo t) ; }

. . .CS1102S: Data Structures and Algorithms 05 A: Trees II 27

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Implementation of Search

private boolean conta ins (AnyType x ,
BinaryNode<AnyType> t) {

i f (t == nul l) return fa lse ;
i n t compareResult = x . compareTo (t . element) ;
i f (compareResult < 0)

return conta ins (x , t . l e f t) ;
else i f (compareResult > 0)

return conta ins (x , t . r i g h t) ;
else

return true ; }

CS1102S: Data Structures and Algorithms 05 A: Trees II 28

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Insertion

Idea

Proceed like in search. If item is found, do nothing. If not, insert
it in the last visited position.

Example

CS1102S: Data Structures and Algorithms 05 A: Trees II 29

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Deletion

Idea

Proceed like in search. If item is not found, do nothing. If item is
found, take action depending on node.

Leaf

If the node is leaf, delete it from parent.

One child

If the node has one child, move the child to parent.

CS1102S: Data Structures and Algorithms 05 A: Trees II 30

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Example: Deletion of Node with One Child

One child

If the node has one child, move the child to parent.

CS1102S: Data Structures and Algorithms 05 A: Trees II 31

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Deletion of Node with Two Children

Idea

Replace data with data of smallest child on the right; then
delete smallest child on the right.

Example

CS1102S: Data Structures and Algorithms 05 A: Trees II 32

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Average-case Analysis

Average Depth

If all insertion sequences are equally likely, the average depth
of any node is O(log N) (proof in Chapter 7)

Deletion introduces imbalance

Deletion favours right subtree, and therefore trees become
“left-heavy” on the long run.

CS1102S: Data Structures and Algorithms 05 A: Trees II 33

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Average-case Analysis

Randomly generated binary search tree

CS1102S: Data Structures and Algorithms 05 A: Trees II 34

Review: Trees
Binary Search Trees

Sets in Java Collections API

Motivation
Excursion: Bounded Types
Binary Search Trees
Binary Search
Insertion and Deletion
Analysis

Average-case Analysis

Search tree after N2 insert/delete

CS1102S: Data Structures and Algorithms 05 A: Trees II 35

Review: Trees
Binary Search Trees

Sets in Java Collections API

1 Review: Trees

2 Binary Search Trees

3 Sets in Java Collections API

CS1102S: Data Structures and Algorithms 05 A: Trees II 36

Review: Trees
Binary Search Trees

Sets in Java Collections API

Sets

Idea

A Set (interface) is a Collection (interface) that does not allow
duplicate entries.

Sorted Sets

A SortedSet (interface) assumes that the data items are
comparable (using a Comparator operation).

in ter face SortedSet<E> extends Set<E>

Implementation

The most common implementation of SortedSet is TreeSet.

CS1102S: Data Structures and Algorithms 05 A: Trees II 37

Review: Trees
Binary Search Trees

Sets in Java Collections API

Next Week

Friday: Midterm

Monday Lab: Lab tasks (attendance taken)

Wednesday: Hashing

Thursday: Tutorial on midterm solutions

Friday: Priority Queues

CS1102S: Data Structures and Algorithms 05 A: Trees II 38

	Review: Trees
	Binary Search Trees
	Motivation
	Excursion: Bounded Types
	Binary Search Trees
	Binary Search
	Insertion and Deletion
	Analysis

	Sets in Java Collections API

