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Motivation

Trees in computer science

Trees are ubiquitous in CS, covering operating systems,
computer graphics, data bases, etc.

Trees as data structures

Provide O(log N) search operations

Heaps

Serve as basis for other efficient data structures, such as heaps
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Binary Trees

Definition

A binary tree is a tree in which no node can have more than two
children.
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Implementation

ClassBinaryNode {
/ / access ib le by other package rou t i nes
Object element ; / / The data i n the node
BinaryNode l e f t ; / / L e f t c h i l d
BinaryNode r i g h t ; / / R ight c h i l d

}
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Motivation

Setup

We would like to quickly find out if a given data item is included
in a collection.

Example

In an underground carpark, a system captures the licence plate
numbers of incoming and outgoing cars.
Problem: Find out if a particular car is in the carpark.
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Operations for Sets

in ter face Set<T> {
public void add (T x ) ;
/ / same as i n s e r t (T x ) ;

public void remove (T x ) ;
public boolean conta ins (T x ) ;
. . .

}
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How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
Therefore, search takes linear time.

How to avoid linear access?

For efficient data structures, we often exploit properties of data
items.
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Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert ( i ) sets inCarPark[i ] to true

remove(i) sets inCarPark[i ] to false

contains( i ) returns inCarPark[i ] .
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The Sad Truth

Not all data items are small integers!

In Singapore, license plate numbers start with 2–3 letters,
followed by a number, followed by another letter.

But: one property remains

We can compare two license plate numbers, for example
lexicographically.
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Lexicographic Ordering on License Plate Numbers

First compare the first letters as in a dictionary
e.g. “SBX...” < “SCY...”, “SA...” < “SAB...”

If the letters are the same, use the following number e.g.
“SBX 100” < “SBX 101”

If the letters and numbers are the same, use the final letter
e.g. “SBX 101 P” < “SBX 101 Q”
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The Comparable Interface

API Interface Comparable

in ter face Comparable<T> {
public i n t compareTo (T o ) ;

}
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Mathematics of Comparable

Ordering

Instances of the Comparable interface are subject to a total
ordering. For any two elements x and y , we know whether:

x smaller then y : x.compareTo(y) returns negative int

x smaller then y : x.compareTo(y) returns positive int

x equals y : x.compareTo(y) returns 0
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Excursion: Bounded Types

Type variables

allow the programmer to refer to a type at multiple places.

Example

public s t a t i c <Any> SchemeList<Any>
conca tA l l ( SchemeList<SchemeList<Any>>

a L i s t L i s t ) {
. . .

}
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Excursion: Bounded Types

Wildcard Types

Sometimes, a generic type is completely unrestricted. We use
? without having to declare it.

Example

public s t a t i c i n t
i t e r a t i v e L e n g t h ( SchemeList<?> a L i s t ) {
i n t acc = 0;
while ( ! a L i s t . i s N i l ( ) ) {

a L i s t = a L i s t . cdr ( ) ;
acc ++; }

return acc ; }
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Excursion: Bounded Types

Upper bounds for types

Sometimes, a type variable must be bounded to restrict the
types that it stands for to a class and all its sub-classes.

Example

in ter face Co l l ec t i on <E> { . . .
boolean add (E e ) ;
boolean addAl l ( Co l l ec t i on <? extends E> c ) ;
. . .

}
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Excursion: Bounded Types

interface Comparable

in ter face Comparable<T> {
public i n t compareTo (T o ) ;

}

Invariance of generic types

If Lion is a subtype of Animal, then Cage<Lion> is not a
subtype of Cage<Animal>.
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Excursion: Bounded Types

Invariance of generic types

If Lion is a subtype of Animal, then Cage<Lion> is not a
subtype of Cage<Animal>.

Invariance of Comparable

Therefore, if Animal implements Comparable<Animal>, Lion
does not necessarily implement Comparable<Lion>.

Lower bounds for Comparable

We want to allow Lion to implement Comparable<T> as long
as T is a super type of Lion.
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Excursion: Bounded Types

Lower bounds for Comparable

We want to allow Lion to implement Comparable<T> as long
as T is a super type of Lion.

class BinarySearchTree
<Any extends Comparable<? super Any>>

{ . . . }
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Binary Search

Setup

Keep items in a tree. Each node holds one data item.

Idea

The left subtree of a node V only contains items smaller than V
and the right subtree only contains items larger than V .

Search

can then proceed top-down, starting at the root. If the search
item is smaller than the item at the root, go down to the left, and
if it is larger, go right.
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Example

Both trees are binary trees, but only the left tree is a search
tree.
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Implementation

private s t a t i c class BinaryNode<AnyType>{
AnyType element ;
BinaryNode<AnyType> l e f t ;
BinaryNode<AnyType> r i g h t ;
BinaryNode ( AnyType theElement ) {

th is ( theElement , null , nul l ) ; }
BinaryNode ( AnyType theElement ,

BinaryNode<AnyType> l t ,
BinaryNode<AnyType> r t ) {

element = theElement ;
l e f t = l t ; r i g h t = r t ; }

}
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Implementation

public class
BinarySearchTree<AnyType extends

Comparable<? super AnyType>> {
private s t a t i c class BinaryNode<AnyType> { . . }
private BinaryNode<AnyType> r oo t ;
public BinarySearchTree ( ) {

r oo t = nul l ; }
public void makeEmpty ( ) {

r oo t = nul l ; }
public boolean isEmpty ( ) {

return r oo t == nul l ; }
. . .

}
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Implementation

public class
BinarySearchTree<AnyType extends

Comparable<? super AnyType>> {
. . .
public boolean conta ins ( AnyType x ) {

return conta ins ( x , roo t ) ; }
public AnyType f indMin ( ) { / / f indMax s i m i l a r

i f ( isEmpty ( ) ) throw new Underf lowExcept ion ( )
return f i ndMin ( roo t ) . element ; }

public void i n s e r t ( AnyType x ) {
r oo t = i n s e r t ( x , r oo t ) ; }

public void remove ( AnyType x ) {
r oo t = remove ( x , roo t ) ; }
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Implementation of Search

private boolean conta ins ( AnyType x ,
BinaryNode<AnyType> t ) {

i f ( t == nul l ) return fa lse ;
i n t compareResult = x . compareTo ( t . element ) ;
i f ( compareResult < 0)

return conta ins ( x , t . l e f t ) ;
else i f ( compareResult > 0 )

return conta ins ( x , t . r i g h t ) ;
else

return true ; }
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Insertion

Idea

Proceed like in search. If item is found, do nothing. If not, insert
it in the last visited position.

Example
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Deletion

Idea

Proceed like in search. If item is not found, do nothing. If item is
found, take action depending on node.

Leaf

If the node is leaf, delete it from parent.

One child

If the node has one child, move the child to parent.
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Example: Deletion of Node with One Child

One child

If the node has one child, move the child to parent.
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Deletion of Node with Two Children

Idea

Replace data with data of smallest child on the right; then
delete smallest child on the right.

Example
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Average-case Analysis

Average Depth

If all insertion sequences are equally likely, the average depth
of any node is O(log N) (proof in Chapter 7)

Deletion introduces imbalance

Deletion favours right subtree, and therefore trees become
“left-heavy” on the long run.
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Average-case Analysis

Randomly generated binary search tree
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Average-case Analysis

Search tree after N2 insert/delete
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Sets

Idea

A Set (interface) is a Collection (interface) that does not allow
duplicate entries.

Sorted Sets

A SortedSet (interface) assumes that the data items are
comparable (using a Comparator operation).

in ter face SortedSet<E> extends Set<E>

Implementation

The most common implementation of SortedSet is TreeSet.
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Next Week

Friday: Midterm

Monday Lab: Lab tasks (attendance taken)

Wednesday: Hashing

Thursday: Tutorial on midterm solutions

Friday: Priority Queues
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