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Example

Setup

We would like to quickly find out if a given data item is included
in a collection.

CS1102S: Data Structures and Algorithms 06 A: Hashing 4



Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Setup

We would like to quickly find out if a given data item is included
in a collection.

Example

In an underground carpark, a system captures the licence plate
numbers of incoming and outgoing cars.
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Example

Setup

We would like to quickly find out if a given data item is included
in a collection.

Example

In an underground carpark, a system captures the licence plate
numbers of incoming and outgoing cars.
Problem: Find out if a particular car is in the carpark.
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How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
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How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
Therefore, search takes linear time.
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How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
Therefore, search takes linear time.

How to avoid linear access?

For efficient data structures, we often exploit properties of data
items.
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Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.
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Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).
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Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert ( i ) sets inCarPark[i ] to true

CS1102S: Data Structures and Algorithms 06 A: Hashing 12



Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert ( i ) sets inCarPark[i ] to true

remove(i) sets inCarPark[i ] to false
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Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert ( i ) sets inCarPark[i ] to true

remove(i) sets inCarPark[i ] to false

contains( i ) returns inCarPark[i ] .
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The Sad Truth

Not all data items are small integers!

In Singapore, license plate numbers start with 2–3 letters,
followed by a number, followed by another letter.
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The Sad Truth

Not all data items are small integers!

In Singapore, license plate numbers start with 2–3 letters,
followed by a number, followed by another letter.

But: one property remains

We can compare two license plate numbers, for example
lexicographically.
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Comparison-based Search

If items can be compared (total ordering), we can organize
them in a binary search tree
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Comparison-based Search

If items can be compared (total ordering), we can organize
them in a binary search tree

Result: O(log N) retrieval time
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Back to Integers

Simplest case

License plate numbers are positive integers from 0 to 9999.
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Back to Integers

Simplest case

License plate numbers are positive integers from 0 to 9999.

A slight variation

What if the license plate numbers are positive integers from
150,000 to 159,999?
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Back to Integers

Simplest case

License plate numbers are positive integers from 0 to 9999.

A slight variation

What if the license plate numbers are positive integers from
150,000 to 159,999?

Solution

Store the numbers in an array from 0 to 9999, and apply a
mapping that generates index from license plate number:

hash(key) = key − 150000
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Type of Hash Key

The most common data structures for search are not integers
but strings.
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Type of Hash Key

The most common data structures for search are not integers
but strings.
Examples:

License plate numbers: “SBX 101 W”
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Type of Hash Key

The most common data structures for search are not integers
but strings.
Examples:

License plate numbers: “SBX 101 W”

Names: “Lau Tat Seng, Peter”
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Type of Hash Key

The most common data structures for search are not integers
but strings.
Examples:

License plate numbers: “SBX 101 W”

Names: “Lau Tat Seng, Peter”

NRIC numbers: “F543209X”
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A HashTable Interface

publ ic in te r face HashTable<Any> {
publ ic void i n s e r t ( Any x ) ;
publ ic void remove ( Any x ) ;
publ ic void conta ins ( Any x ) ;

}
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A First Attempt

publ ic class NaiveHashTable<Any> {
pr iva te s t a t i c f i n a l i n t DEFAULT TABLE SIZE = 100;
pr iva te s t a t i c boolean [ ] theArray ;
publ ic NaiveHashTable ( ) {

th i s ( DEFAULT TABLE SIZE ) ;
}
publ ic NaiveHashTable ( i n t s ize ) {

theArray = new boolean [ s i ze ] ;
}
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A First Attempt

publ ic void i n s e r t ( Any x ) {
theArray [ myhash ( x ) ] = t rue ;

}
publ ic void remove ( Any x ) {

theArray [ myhash ( x ) ] = fa lse ;
}
publ ic boolean conta ins ( Any x ) {

return theArray [ myhash ( x ) ] ;
}
pr iva te i n t myhash ( Any x ){

/ / mapping x to 0 . . theArray . leng th
} }
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Some Practical Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!
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Some Practical Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?
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Some Practical Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?

Consideration 3: Collision

How to handle multiple hash keys mapping to the same value?
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Hashing Strings

Requirement

Map arbitrary strings to integers from 0 to a given limit such that
the integers are evenly spread between 0 and the limit
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Hashing Strings

Requirement

Map arbitrary strings to integers from 0 to a given limit such that
the integers are evenly spread between 0 and the limit

First idea

Sum up the characters in the string
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Summing up Characters

publ ic s t a t i c i n t hash ( S t r i n g key ,
i n t t ab leS ize ) {

i n t hashVal = 0 ;
fo r ( i n t i = 0 ; i < key . leng th ( ) ; i ++)

hashVal += key . charAt ( i ) ;
return hashVal % tab leS ize ; }
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Summing up Characters

publ ic s t a t i c i n t hash ( S t r i n g key ,
i n t t ab leS ize ) {

i n t hashVal = 0 ;
fo r ( i n t i = 0 ; i < key . leng th ( ) ; i ++)

hashVal += key . charAt ( i ) ;
return hashVal % tab leS ize ; }

What if tableSize = 10007 and all strings have a length of at
most 3 characters?
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Second Attempt

Idea

If the string consists of English words, we could make sure that
each different combinations of the first three letters hash to a
different value.

publ ic s t a t i c i n t hash ( S t r i n g key ,
i n t t ab leS ize ) {

return ( key . charAt ( 0 ) +
27 ∗ key . charAt ( 1 ) +
729 ∗ key . charAt ( 2 )

) % tab leS ize ; }
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Second Attempt

publ ic s t a t i c i n t hash ( S t r i n g key ,
i n t t ab leS ize ) {

return ( key . charAt ( 0 ) +
27 ∗ key . charAt ( 1 ) +
729 ∗ key . charAt ( 2 )

) % tab leS ize ; }

Analysis

There are 263 = 17, 576 possible combinations of three letter
characters, but only 2851 actually occur in English!
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Third Attempt

Idea

Compute
KeySize−1∑

i=0

Key[KeySize − i − 1] · 27i

and bring result into proper range between 0 and tableSize.
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Third Attempt

publ ic s t a t i c i n t hash ( S t r i n g key ,
i n t t ab leS ize ) {

i n t hashVal = 0 ;
fo r ( i n t i = 0 ; i < key . leng th ( ) ; i ++)

hashVal = 37 ∗ hashVal + key . charAt ( i ) ;
hashVal %= tab leS ize ;
i f ( hashVal < 0)

hashVal += tab leS ize ;
return hashVal ; }

CS1102S: Data Structures and Algorithms 06 A: Hashing 40



Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Common Variations

Use only prefix of overall string
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Common Variations

Use only prefix of overall string

Use every second character
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Common Variations

Use only prefix of overall string

Use every second character

Use specific data (street address)
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Recap: Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!
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Recap: Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?
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Recap: Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?

Consideration 3: Collision

How to handle multiple hash keys mapping to the same
value?
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Separate Chaining

Idea

Keep all elements that hash to the same value in a linked list
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Separate Chaining

Idea

Keep all elements that hash to the same value in a linked list

Modify hash table operations

Hash table operations (insert, remove, contains) now iterate
through list
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Separate Chaining Example
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Excursion: The Class Object

publ ic class Object {
protected Object c lone ( ) { . . . }
boolean equals ( Object ob j ) { . . . }
protected void f i n a l i z e ( ) { . . . }
Class<?> getClass ( ) { . . . }
i n t hashCode ( ) { . . . }
S t r i n g t o S t r i n g ( ) { . . . }

}
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Excursion: Preparing a Class for Hashing

publ ic class Employee {
publ ic boolean equals ( Object rhs ) {

return rhs instanceof Employee &&
name . equals ( ( ( Employee ) rhs ) . name ) ; }

publ ic i n t hashCode ( ) {
return name . hashCode ( ) ; }

pr iva te S t r i n g name ;
pr iva te double sa la ry ;
pr iva te i n t s e n i o r i t y ; }
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Separate Chaining Implementation

publ ic class SeparateChainingHashTable<Any> {
publ ic SeparateChainingHashTable ( )

{ . . . }
publ ic SeparateChainingHashTable ( i n t s ize )

{ . . . }
publ ic void i n s e r t ( Any x )

{ . . . }
publ ic void remove ( Any x )

{ . . . }
publ ic boolean conta ins ( Any x )

{ . . . }
publ ic void makeEmpty ( )

{ . . . }
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Separate Chaining Implementation

pr iva te s t a t i c f i n a l i n t DEFAULT TABLE SIZE = 101;
pr iva te L i s t <Any> [ ] t h e L i s t s ;
pr iva te i n t cur ren tS ize ;
pr iva te i n t myhash ( Any x ) {

. . . }
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Separate Chaining Implementation

pr iva te i n t myhash ( Any x ) {
i n t hashVal = x . hashCode ( ) ;
hashVal %= t h e L i s t s . leng th ;
i f ( hashVal < 0 )

hashVal += t h e L i s t s . leng th ;
return hashVal ;

}
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Separate Chaining Implementation

publ ic SeparateChainingHashTable ( ) {
th i s ( DEFAULT TABLE SIZE ) ;

}
publ ic SeparateChainingHashTable ( i n t s ize ) {

t h e L i s t s = new L inkedL i s t [ nextPrime ( s ize ) ] ;
fo r ( i n t i = 0 ; i < t h e L i s t s . leng th ; i ++ )

t h e L i s t s [ i ] = new L inkedL is t <Any>( ) ;
}
publ ic void makeEmpty ( ) {

fo r ( i n t i = 0 ; i < t h e L i s t s . leng th ; i ++ )
t h e L i s t s [ i ] . c l ea r ( ) ;

cu r ren tS ize = 0;
}
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Separate Chaining Implementation

publ ic boolean conta ins ( Any x ) {
L i s t <Any> whichL is t = t h e L i s t s [ myhash ( x ) ] ;
return whichL is t . con ta ins ( x ) ;

}
publ ic void i n s e r t ( Any x ) {

L i s t <Any> whichL is t = t h e L i s t s [ myhash ( x ) ] ;
i f ( ! wh ichL is t . con ta ins ( x ) ) {

whichL is t . add ( x ) ;
i f ( ++cur ren tS ize > t h e L i s t s . leng th )

rehash ( ) ;
}

}
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Separate Chaining Implementation

publ ic void remove ( Any x ) {
L i s t <Any> whichL is t = t h e L i s t s [ myhash ( x ) ] ;
i f ( wh ichL is t . con ta ins ( x ) ) {

whichL is t . remove ( x ) ;
cur ren tS ize −−;

}
}
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Analysis

Effectiveness

Separate chaining is a simple and effective technique to deal
with collisions
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Analysis

Effectiveness

Separate chaining is a simple and effective technique to deal
with collisions

Disadvantage

Linked lists add inefficiency due to the need to create objects at
runtime.
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Analysis

Effectiveness

Separate chaining is a simple and effective technique to deal
with collisions

Disadvantage

Linked lists add inefficiency due to the need to create objects at
runtime.

Idea

Store items directly into array; use alternative cells if a collision
occurs
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Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs
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Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

More formally

Try cells h0(x), h1(x), h2(x), . . . until an empty cell is found.
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Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

More formally

Try cells h0(x), h1(x), h2(x), . . . until an empty cell is found.

How to define hi?

hi(x) = (hash(x) + f (i)) mod TableSize, wheref (0) = 0
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Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

More formally

Try cells h0(x), h1(x), h2(x), . . . until an empty cell is found.

How to define hi?

hi(x) = (hash(x) + f (i)) mod TableSize, wheref (0) = 0

Definition

They function f is called the collision resolution strategy.
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Linear Probing

Idea

If hash(x) is taken, try the next cell to the right. If that is taken,
too, try the next one, etc.
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Linear Probing
Quadratic Probing

Linear Probing

Idea

If hash(x) is taken, try the next cell to the right. If that is taken,
too, try the next one, etc.

Formally

f (i) = i
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Problem with linear probing

Definition

The load factor, λ, of a hash table is the ratio of the number of
elements in the hash table to the table size.
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Problem with linear probing

Definition

The load factor, λ, of a hash table is the ratio of the number of
elements in the hash table to the table size.

Clustering

As the load factor λ increases, occupied areas in the array tend
to occur in clusters, leading to frequent unsuccessful insertion
tries.
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Linear Probing vs Random Strategy
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Quadratic Probing

Idea

To avoid clustering, increase the step size with each
unsuccessful try.
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Quadratic Probing

Idea

To avoid clustering, increase the step size with each
unsuccessful try.

Formally

f (i) = i2
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Properties of Linear and Quadratic Probing

Expected number of probes for linear probing

1
2
(1 + 1/(1 − λ)2)
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Properties of Linear and Quadratic Probing

Expected number of probes for linear probing

1
2
(1 + 1/(1 − λ)2)

Quadratic probing

Can we guarantee that we find an empty slot, if an empty slot
exists?
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Properties of Linear and Quadratic Probing

Expected number of probes for linear probing

1
2
(1 + 1/(1 − λ)2)

Quadratic probing

Can we guarantee that we find an empty slot, if an empty slot
exists?

Theorem

If quadratic probing is used, and the table size is prime, then a
new element can always be inserted if the table is at least half
empty.
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Rehashing

Idea

When load factor gets too large (for quadratic hashing close to
1/2), double the array size and rehash all elements.
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1 Review and Motivation

2 Hashing Strings
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New Puzzler: “It’s Elementary”

CS1102S: Data Structures and Algorithms 06 A: Hashing 83



Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Last Puzzler: Shades of Gray

What does the following program print?

publ ic class ShadesOfGray {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n (X .Y . Z ) ;
} }
class X {

s t a t i c class Y {
s t a t i c S t r i n g Z = ” Black ” ;

}
s t a t i c C Y = new C ( ) ; }

class C {
S t r i n g Z = ” White ” ;

}
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Obscuring Declarations

publ ic class Test {
publ ic i n t myVar = 3;
publ ic void f ( i n t myVar ) {

return myVar + 7;
}

}

There are two declarations of myVar. The inner declaration
obscures the outer declaration.
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Declarations at Same Level...

...are usually not allowed:

publ ic class Test {
publ ic i n t myVar = 3;
publ ic i n t myVar = 4; / / leads to

/ / comp i la t i on
/ / e r r o r

. . .
}
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Exceptions

When a variable and a type have the same name and both
are in scope, the variable name takes precedence.

A variable name takes precedence over package names.

A type name takes precedence over package names.
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Puzzler Solution: Shades of Gray

The program

publ ic class ShadesOfGray {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n (X .Y . Z ) ;
} }
class X {

s t a t i c class Y {
s t a t i c S t r i n g Z = ” Black ” ;

}
s t a t i c C Y = new C ( ) ; }

class C {
S t r i n g Z = ” White ” ;

}

prints “White”.CS1102S: Data Structures and Algorithms 06 A: Hashing 88



Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

How to Avoid Conflicts?

Naming conventions

Classes (types) begin with a capital letter

Variables begin with a lowercase letter

Constants arwe written in ALL CAPS

Package names are written in lower.case

Avoid variable names such as com, org, net, edu, java
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The Program using Naming Convention

publ ic class ShadesOfGray {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n ( Ex .Why. z ) ;
} }
class Ex {

s t a t i c class Why {
s t a t i c S t r i n g z = ” Black ” ;

}
s t a t i c See y = new See ( ) ; }

class See {
S t r i n g z = ” White ” ;

}
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New Puzzler: It’s Elementary

What does the following program print?

publ ic class Elementary {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n (12345 + 5432 l ) ;
}

}
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New Puzzler: It’s Elementary

What does the following program print?

publ ic class Elementary {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n (12345 + 5432 l ) ;
}

}

Output: 17777
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New Puzzler: It’s Elementary

What does the following program print?

publ ic class Elementary {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n (12345 + 5432 l ) ;
}

}

Output: 17777
Why?
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Next Week

Friday: Hashing; priority queues
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Next Week

Friday: Hashing; priority queues

After that: Sorting, sorting, and more sorting!
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