
Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

06 A: Hashing

CS1102S: Data Structures and Algorithms

Martin Henz

February 23, 2010

Generated on Tuesday 23rd February, 2010, 12:00

CS1102S: Data Structures and Algorithms 06 A: Hashing 1

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

1 Review and Motivation

2 Hashing Strings

3 Separate Chaining

4 Hash Tables without Linked Lists

5 Rehashing

6 Puzzlers

CS1102S: Data Structures and Algorithms 06 A: Hashing 2

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

1 Review and Motivation

2 Hashing Strings

3 Separate Chaining

4 Hash Tables without Linked Lists

5 Rehashing

6 Puzzlers

CS1102S: Data Structures and Algorithms 06 A: Hashing 3

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Setup

We would like to quickly find out if a given data item is included
in a collection.

CS1102S: Data Structures and Algorithms 06 A: Hashing 4

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Setup

We would like to quickly find out if a given data item is included
in a collection.

Example

In an underground carpark, a system captures the licence plate
numbers of incoming and outgoing cars.

CS1102S: Data Structures and Algorithms 06 A: Hashing 5

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Setup

We would like to quickly find out if a given data item is included
in a collection.

Example

In an underground carpark, a system captures the licence plate
numbers of incoming and outgoing cars.
Problem: Find out if a particular car is in the carpark.

CS1102S: Data Structures and Algorithms 06 A: Hashing 6

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.

CS1102S: Data Structures and Algorithms 06 A: Hashing 7

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
Therefore, search takes linear time.

CS1102S: Data Structures and Algorithms 06 A: Hashing 8

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

How About Lists, Arrays, Stacks, Queues?

Problem with Lists, Arrays, Stacks, Queues

With lists, arrays, stacks and queues, we can only access the
collection using an index or in a LIFO/FIFO manner.
Therefore, search takes linear time.

How to avoid linear access?

For efficient data structures, we often exploit properties of data
items.

CS1102S: Data Structures and Algorithms 06 A: Hashing 9

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

CS1102S: Data Structures and Algorithms 06 A: Hashing 10

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

CS1102S: Data Structures and Algorithms 06 A: Hashing 11

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert (i) sets inCarPark[i] to true

CS1102S: Data Structures and Algorithms 06 A: Hashing 12

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert (i) sets inCarPark[i] to true

remove(i) sets inCarPark[i] to false

CS1102S: Data Structures and Algorithms 06 A: Hashing 13

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Example

Simple license plates

Let us say the license plate numbers are positive integers from
0 to 9999.

Solution

Keep an array inCarPark of boolean values (initially all
false).

insert (i) sets inCarPark[i] to true

remove(i) sets inCarPark[i] to false

contains(i) returns inCarPark[i] .

CS1102S: Data Structures and Algorithms 06 A: Hashing 14

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

The Sad Truth

Not all data items are small integers!

In Singapore, license plate numbers start with 2–3 letters,
followed by a number, followed by another letter.

CS1102S: Data Structures and Algorithms 06 A: Hashing 15

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

The Sad Truth

Not all data items are small integers!

In Singapore, license plate numbers start with 2–3 letters,
followed by a number, followed by another letter.

But: one property remains

We can compare two license plate numbers, for example
lexicographically.

CS1102S: Data Structures and Algorithms 06 A: Hashing 16

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Comparison-based Search

If items can be compared (total ordering), we can organize
them in a binary search tree

CS1102S: Data Structures and Algorithms 06 A: Hashing 17

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Comparison-based Search

If items can be compared (total ordering), we can organize
them in a binary search tree

Result: O(log N) retrieval time

CS1102S: Data Structures and Algorithms 06 A: Hashing 18

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Back to Integers

Simplest case

License plate numbers are positive integers from 0 to 9999.

CS1102S: Data Structures and Algorithms 06 A: Hashing 19

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Back to Integers

Simplest case

License plate numbers are positive integers from 0 to 9999.

A slight variation

What if the license plate numbers are positive integers from
150,000 to 159,999?

CS1102S: Data Structures and Algorithms 06 A: Hashing 20

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Back to Integers

Simplest case

License plate numbers are positive integers from 0 to 9999.

A slight variation

What if the license plate numbers are positive integers from
150,000 to 159,999?

Solution

Store the numbers in an array from 0 to 9999, and apply a
mapping that generates index from license plate number:

hash(key) = key − 150000

CS1102S: Data Structures and Algorithms 06 A: Hashing 21

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Type of Hash Key

The most common data structures for search are not integers
but strings.

CS1102S: Data Structures and Algorithms 06 A: Hashing 22

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Type of Hash Key

The most common data structures for search are not integers
but strings.
Examples:

License plate numbers: “SBX 101 W”

CS1102S: Data Structures and Algorithms 06 A: Hashing 23

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Type of Hash Key

The most common data structures for search are not integers
but strings.
Examples:

License plate numbers: “SBX 101 W”

Names: “Lau Tat Seng, Peter”

CS1102S: Data Structures and Algorithms 06 A: Hashing 24

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Type of Hash Key

The most common data structures for search are not integers
but strings.
Examples:

License plate numbers: “SBX 101 W”

Names: “Lau Tat Seng, Peter”

NRIC numbers: “F543209X”

CS1102S: Data Structures and Algorithms 06 A: Hashing 25

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

A HashTable Interface

publ ic in te r face HashTable<Any> {
publ ic void i n s e r t (Any x) ;
publ ic void remove (Any x) ;
publ ic void conta ins (Any x) ;

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 26

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

A First Attempt

publ ic class NaiveHashTable<Any> {
pr iva te s t a t i c f i n a l i n t DEFAULT TABLE SIZE = 100;
pr iva te s t a t i c boolean [] theArray ;
publ ic NaiveHashTable () {

th i s (DEFAULT TABLE SIZE) ;
}
publ ic NaiveHashTable (i n t s ize) {

theArray = new boolean [s i ze] ;
}

CS1102S: Data Structures and Algorithms 06 A: Hashing 27

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

A First Attempt

publ ic void i n s e r t (Any x) {
theArray [myhash (x)] = t rue ;

}
publ ic void remove (Any x) {

theArray [myhash (x)] = fa lse ;
}
publ ic boolean conta ins (Any x) {

return theArray [myhash (x)] ;
}
pr iva te i n t myhash (Any x){

/ / mapping x to 0 . . theArray . leng th
} }

CS1102S: Data Structures and Algorithms 06 A: Hashing 28

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Some Practical Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

CS1102S: Data Structures and Algorithms 06 A: Hashing 29

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Some Practical Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?

CS1102S: Data Structures and Algorithms 06 A: Hashing 30

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Some Practical Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?

Consideration 3: Collision

How to handle multiple hash keys mapping to the same value?

CS1102S: Data Structures and Algorithms 06 A: Hashing 31

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

1 Review and Motivation

2 Hashing Strings

3 Separate Chaining

4 Hash Tables without Linked Lists

5 Rehashing

6 Puzzlers

CS1102S: Data Structures and Algorithms 06 A: Hashing 32

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Hashing Strings

Requirement

Map arbitrary strings to integers from 0 to a given limit such that
the integers are evenly spread between 0 and the limit

CS1102S: Data Structures and Algorithms 06 A: Hashing 33

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Hashing Strings

Requirement

Map arbitrary strings to integers from 0 to a given limit such that
the integers are evenly spread between 0 and the limit

First idea

Sum up the characters in the string

CS1102S: Data Structures and Algorithms 06 A: Hashing 34

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Summing up Characters

publ ic s t a t i c i n t hash (S t r i n g key ,
i n t t ab leS ize) {

i n t hashVal = 0 ;
fo r (i n t i = 0 ; i < key . leng th () ; i ++)

hashVal += key . charAt (i) ;
return hashVal % tab leS ize ; }

CS1102S: Data Structures and Algorithms 06 A: Hashing 35

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Summing up Characters

publ ic s t a t i c i n t hash (S t r i n g key ,
i n t t ab leS ize) {

i n t hashVal = 0 ;
fo r (i n t i = 0 ; i < key . leng th () ; i ++)

hashVal += key . charAt (i) ;
return hashVal % tab leS ize ; }

What if tableSize = 10007 and all strings have a length of at
most 3 characters?

CS1102S: Data Structures and Algorithms 06 A: Hashing 36

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Second Attempt

Idea

If the string consists of English words, we could make sure that
each different combinations of the first three letters hash to a
different value.

publ ic s t a t i c i n t hash (S t r i n g key ,
i n t t ab leS ize) {

return (key . charAt (0) +
27 ∗ key . charAt (1) +
729 ∗ key . charAt (2)

) % tab leS ize ; }

CS1102S: Data Structures and Algorithms 06 A: Hashing 37

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Second Attempt

publ ic s t a t i c i n t hash (S t r i n g key ,
i n t t ab leS ize) {

return (key . charAt (0) +
27 ∗ key . charAt (1) +
729 ∗ key . charAt (2)

) % tab leS ize ; }

Analysis

There are 263 = 17, 576 possible combinations of three letter
characters, but only 2851 actually occur in English!

CS1102S: Data Structures and Algorithms 06 A: Hashing 38

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Third Attempt

Idea

Compute
KeySize−1∑

i=0

Key[KeySize − i − 1] · 27i

and bring result into proper range between 0 and tableSize.

CS1102S: Data Structures and Algorithms 06 A: Hashing 39

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Third Attempt

publ ic s t a t i c i n t hash (S t r i n g key ,
i n t t ab leS ize) {

i n t hashVal = 0 ;
fo r (i n t i = 0 ; i < key . leng th () ; i ++)

hashVal = 37 ∗ hashVal + key . charAt (i) ;
hashVal %= tab leS ize ;
i f (hashVal < 0)

hashVal += tab leS ize ;
return hashVal ; }

CS1102S: Data Structures and Algorithms 06 A: Hashing 40

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Common Variations

Use only prefix of overall string

CS1102S: Data Structures and Algorithms 06 A: Hashing 41

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Common Variations

Use only prefix of overall string

Use every second character

CS1102S: Data Structures and Algorithms 06 A: Hashing 42

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Common Variations

Use only prefix of overall string

Use every second character

Use specific data (street address)

CS1102S: Data Structures and Algorithms 06 A: Hashing 43

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Recap: Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

CS1102S: Data Structures and Algorithms 06 A: Hashing 44

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Recap: Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?

CS1102S: Data Structures and Algorithms 06 A: Hashing 45

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Recap: Considerations

Consideration 1: Size of array

The size of array cannot be too large; it must fit into main
memory!

Consideration 2: Spread

How to “spread” the hash keys evenly over the available hash
values?

Consideration 3: Collision

How to handle multiple hash keys mapping to the same
value?

CS1102S: Data Structures and Algorithms 06 A: Hashing 46

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining

Idea

Keep all elements that hash to the same value in a linked list

CS1102S: Data Structures and Algorithms 06 A: Hashing 47

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining

Idea

Keep all elements that hash to the same value in a linked list

Modify hash table operations

Hash table operations (insert, remove, contains) now iterate
through list

CS1102S: Data Structures and Algorithms 06 A: Hashing 48

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 49

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Excursion: The Class Object

publ ic class Object {
protected Object c lone () { . . . }
boolean equals (Object ob j) { . . . }
protected void f i n a l i z e () { . . . }
Class<?> getClass () { . . . }
i n t hashCode () { . . . }
S t r i n g t o S t r i n g () { . . . }

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 50

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Excursion: Preparing a Class for Hashing

publ ic class Employee {
publ ic boolean equals (Object rhs) {

return rhs instanceof Employee &&
name . equals (((Employee) rhs) . name) ; }

publ ic i n t hashCode () {
return name . hashCode () ; }

pr iva te S t r i n g name ;
pr iva te double sa la ry ;
pr iva te i n t s e n i o r i t y ; }

CS1102S: Data Structures and Algorithms 06 A: Hashing 51

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Implementation

publ ic class SeparateChainingHashTable<Any> {
publ ic SeparateChainingHashTable ()

{ . . . }
publ ic SeparateChainingHashTable (i n t s ize)

{ . . . }
publ ic void i n s e r t (Any x)

{ . . . }
publ ic void remove (Any x)

{ . . . }
publ ic boolean conta ins (Any x)

{ . . . }
publ ic void makeEmpty ()

{ . . . }

CS1102S: Data Structures and Algorithms 06 A: Hashing 52

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Implementation

pr iva te s t a t i c f i n a l i n t DEFAULT TABLE SIZE = 101;
pr iva te L i s t <Any> [] t h e L i s t s ;
pr iva te i n t cur ren tS ize ;
pr iva te i n t myhash (Any x) {

. . . }

CS1102S: Data Structures and Algorithms 06 A: Hashing 53

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Implementation

pr iva te i n t myhash (Any x) {
i n t hashVal = x . hashCode () ;
hashVal %= t h e L i s t s . leng th ;
i f (hashVal < 0)

hashVal += t h e L i s t s . leng th ;
return hashVal ;

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 54

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Implementation

publ ic SeparateChainingHashTable () {
th i s (DEFAULT TABLE SIZE) ;

}
publ ic SeparateChainingHashTable (i n t s ize) {

t h e L i s t s = new L inkedL i s t [nextPrime (s ize)] ;
fo r (i n t i = 0 ; i < t h e L i s t s . leng th ; i ++)

t h e L i s t s [i] = new L inkedL is t <Any>() ;
}
publ ic void makeEmpty () {

fo r (i n t i = 0 ; i < t h e L i s t s . leng th ; i ++)
t h e L i s t s [i] . c l ea r () ;

cu r ren tS ize = 0;
}

CS1102S: Data Structures and Algorithms 06 A: Hashing 55

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Implementation

publ ic boolean conta ins (Any x) {
L i s t <Any> whichL is t = t h e L i s t s [myhash (x)] ;
return whichL is t . con ta ins (x) ;

}
publ ic void i n s e r t (Any x) {

L i s t <Any> whichL is t = t h e L i s t s [myhash (x)] ;
i f (! wh ichL is t . con ta ins (x)) {

whichL is t . add (x) ;
i f (++cur ren tS ize > t h e L i s t s . leng th)

rehash () ;
}

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 56

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Separate Chaining Implementation

publ ic void remove (Any x) {
L i s t <Any> whichL is t = t h e L i s t s [myhash (x)] ;
i f (wh ichL is t . con ta ins (x)) {

whichL is t . remove (x) ;
cur ren tS ize −−;

}
}

CS1102S: Data Structures and Algorithms 06 A: Hashing 57

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Analysis

Effectiveness

Separate chaining is a simple and effective technique to deal
with collisions

CS1102S: Data Structures and Algorithms 06 A: Hashing 58

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Analysis

Effectiveness

Separate chaining is a simple and effective technique to deal
with collisions

Disadvantage

Linked lists add inefficiency due to the need to create objects at
runtime.

CS1102S: Data Structures and Algorithms 06 A: Hashing 59

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Analysis

Effectiveness

Separate chaining is a simple and effective technique to deal
with collisions

Disadvantage

Linked lists add inefficiency due to the need to create objects at
runtime.

Idea

Store items directly into array; use alternative cells if a collision
occurs

CS1102S: Data Structures and Algorithms 06 A: Hashing 60

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

1 Review and Motivation

2 Hashing Strings

3 Separate Chaining

4 Hash Tables without Linked Lists
Linear Probing
Quadratic Probing

5 Rehashing

6 Puzzlers
CS1102S: Data Structures and Algorithms 06 A: Hashing 61

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

CS1102S: Data Structures and Algorithms 06 A: Hashing 62

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

More formally

Try cells h0(x), h1(x), h2(x), . . . until an empty cell is found.

CS1102S: Data Structures and Algorithms 06 A: Hashing 63

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

More formally

Try cells h0(x), h1(x), h2(x), . . . until an empty cell is found.

How to define hi?

hi(x) = (hash(x) + f (i)) mod TableSize, wheref (0) = 0

CS1102S: Data Structures and Algorithms 06 A: Hashing 64

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Hash Tables without Linked Lists

Idea

Store items directly into array; use alternative cells if a collision
occurs

More formally

Try cells h0(x), h1(x), h2(x), . . . until an empty cell is found.

How to define hi?

hi(x) = (hash(x) + f (i)) mod TableSize, wheref (0) = 0

Definition

They function f is called the collision resolution strategy.

CS1102S: Data Structures and Algorithms 06 A: Hashing 65

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Linear Probing

Idea

If hash(x) is taken, try the next cell to the right. If that is taken,
too, try the next one, etc.

CS1102S: Data Structures and Algorithms 06 A: Hashing 66

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Linear Probing

Idea

If hash(x) is taken, try the next cell to the right. If that is taken,
too, try the next one, etc.

Formally

f (i) = i

CS1102S: Data Structures and Algorithms 06 A: Hashing 67

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Linear Probing: Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 68

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Problem with linear probing

Definition

The load factor, λ, of a hash table is the ratio of the number of
elements in the hash table to the table size.

CS1102S: Data Structures and Algorithms 06 A: Hashing 69

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Problem with linear probing

Definition

The load factor, λ, of a hash table is the ratio of the number of
elements in the hash table to the table size.

Clustering

As the load factor λ increases, occupied areas in the array tend
to occur in clusters, leading to frequent unsuccessful insertion
tries.

CS1102S: Data Structures and Algorithms 06 A: Hashing 70

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Linear Probing vs Random Strategy

CS1102S: Data Structures and Algorithms 06 A: Hashing 71

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Quadratic Probing

Idea

To avoid clustering, increase the step size with each
unsuccessful try.

CS1102S: Data Structures and Algorithms 06 A: Hashing 72

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Quadratic Probing

Idea

To avoid clustering, increase the step size with each
unsuccessful try.

Formally

f (i) = i2

CS1102S: Data Structures and Algorithms 06 A: Hashing 73

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Quadratic Probing: Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 74

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Properties of Linear and Quadratic Probing

Expected number of probes for linear probing

1
2
(1 + 1/(1 − λ)2)

CS1102S: Data Structures and Algorithms 06 A: Hashing 75

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Properties of Linear and Quadratic Probing

Expected number of probes for linear probing

1
2
(1 + 1/(1 − λ)2)

Quadratic probing

Can we guarantee that we find an empty slot, if an empty slot
exists?

CS1102S: Data Structures and Algorithms 06 A: Hashing 76

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Linear Probing
Quadratic Probing

Properties of Linear and Quadratic Probing

Expected number of probes for linear probing

1
2
(1 + 1/(1 − λ)2)

Quadratic probing

Can we guarantee that we find an empty slot, if an empty slot
exists?

Theorem

If quadratic probing is used, and the table size is prime, then a
new element can always be inserted if the table is at least half
empty.

CS1102S: Data Structures and Algorithms 06 A: Hashing 77

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Rehashing

Idea

When load factor gets too large (for quadratic hashing close to
1/2), double the array size and rehash all elements.

CS1102S: Data Structures and Algorithms 06 A: Hashing 78

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Rehashing: Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 79

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Rehashing: Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 80

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Rehashing: Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 81

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Rehashing: Example

CS1102S: Data Structures and Algorithms 06 A: Hashing 82

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

1 Review and Motivation

2 Hashing Strings

3 Separate Chaining

4 Hash Tables without Linked Lists

5 Rehashing

6 Puzzlers
Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

CS1102S: Data Structures and Algorithms 06 A: Hashing 83

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Last Puzzler: Shades of Gray

What does the following program print?

publ ic class ShadesOfGray {
publ ic s t a t i c void main (S t r i n g [] args) {

System . out . p r i n t l n (X .Y . Z) ;
} }
class X {

s t a t i c class Y {
s t a t i c S t r i n g Z = ” Black ” ;

}
s t a t i c C Y = new C () ; }

class C {
S t r i n g Z = ” White ” ;

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 84

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Obscuring Declarations

publ ic class Test {
publ ic i n t myVar = 3;
publ ic void f (i n t myVar) {

return myVar + 7;
}

}

There are two declarations of myVar. The inner declaration
obscures the outer declaration.

CS1102S: Data Structures and Algorithms 06 A: Hashing 85

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Declarations at Same Level...

...are usually not allowed:

publ ic class Test {
publ ic i n t myVar = 3;
publ ic i n t myVar = 4; / / leads to

/ / comp i la t i on
/ / e r r o r

. . .
}

CS1102S: Data Structures and Algorithms 06 A: Hashing 86

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Exceptions

When a variable and a type have the same name and both
are in scope, the variable name takes precedence.

A variable name takes precedence over package names.

A type name takes precedence over package names.

CS1102S: Data Structures and Algorithms 06 A: Hashing 87

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Puzzler Solution: Shades of Gray

The program

publ ic class ShadesOfGray {
publ ic s t a t i c void main (S t r i n g [] args) {

System . out . p r i n t l n (X .Y . Z) ;
} }
class X {

s t a t i c class Y {
s t a t i c S t r i n g Z = ” Black ” ;

}
s t a t i c C Y = new C () ; }

class C {
S t r i n g Z = ” White ” ;

}

prints “White”.CS1102S: Data Structures and Algorithms 06 A: Hashing 88

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

How to Avoid Conflicts?

Naming conventions

Classes (types) begin with a capital letter

Variables begin with a lowercase letter

Constants arwe written in ALL CAPS

Package names are written in lower.case

Avoid variable names such as com, org, net, edu, java

CS1102S: Data Structures and Algorithms 06 A: Hashing 89

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

The Program using Naming Convention

publ ic class ShadesOfGray {
publ ic s t a t i c void main (S t r i n g [] args) {

System . out . p r i n t l n (Ex .Why. z) ;
} }
class Ex {

s t a t i c class Why {
s t a t i c S t r i n g z = ” Black ” ;

}
s t a t i c See y = new See () ; }

class See {
S t r i n g z = ” White ” ;

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 90

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

New Puzzler: It’s Elementary

What does the following program print?

publ ic class Elementary {
publ ic s t a t i c void main (S t r i n g [] args) {

System . out . p r i n t l n (12345 + 5432 l) ;
}

}

CS1102S: Data Structures and Algorithms 06 A: Hashing 91

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

New Puzzler: It’s Elementary

What does the following program print?

publ ic class Elementary {
publ ic s t a t i c void main (S t r i n g [] args) {

System . out . p r i n t l n (12345 + 5432 l) ;
}

}

Output: 17777

CS1102S: Data Structures and Algorithms 06 A: Hashing 92

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

New Puzzler: It’s Elementary

What does the following program print?

publ ic class Elementary {
publ ic s t a t i c void main (S t r i n g [] args) {

System . out . p r i n t l n (12345 + 5432 l) ;
}

}

Output: 17777
Why?

CS1102S: Data Structures and Algorithms 06 A: Hashing 93

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Next Week

Friday: Hashing; priority queues

CS1102S: Data Structures and Algorithms 06 A: Hashing 94

Review and Motivation
Hashing Strings

Separate Chaining
Hash Tables without Linked Lists

Rehashing
Puzzlers

Solution Puzzler “Shades of Gray”
New Puzzler: “It’s Elementary”

Next Week

Friday: Hashing; priority queues

After that: Sorting, sorting, and more sorting!

CS1102S: Data Structures and Algorithms 06 A: Hashing 95

	Review and Motivation
	Hashing Strings
	Separate Chaining
	Hash Tables without Linked Lists
	Linear Probing
	Quadratic Probing

	Rehashing
	Puzzlers
	Solution Puzzler ``Shades of Gray''
	New Puzzler: ``It's Elementary''

