
Introduction
Insertion Sort

A Lower Bound
Shell Sort

07 A: Sorting I

CS1102S: Data Structures and Algorithms

Martin Henz

March 3, 2010

Generated on Tuesday 2nd March, 2010, 10:59

CS1102S: Data Structures and Algorithms 07 A: Sorting I 1

Introduction
Insertion Sort

A Lower Bound
Shell Sort

1 Introduction

2 Insertion Sort

3 A Lower Bound

4 Shell Sort

CS1102S: Data Structures and Algorithms 07 A: Sorting I 2

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

1 Introduction
Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

2 Insertion Sort

3 A Lower Bound

4 Shell Sort

CS1102S: Data Structures and Algorithms 07 A: Sorting I 3

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Flashback: Priority Queues

Main idea

Keep elements in complete binary tree with parent element
always bigger than child elements

Requirement

Elements are ordered (Comparable or through Comparator)

CS1102S: Data Structures and Algorithms 07 A: Sorting I 4

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Flashback: Hashing

Main idea

Compute hash value for elements; use hash value as index into
array

Requirement

Given mapping of elements to their hash value

CS1102S: Data Structures and Algorithms 07 A: Sorting I 5

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Sorting

Input

Unsorted array of elements

Behavior

Rearrange elements of array such that the smallest appears
first, followed by the second smallest etc, finally followed by the
largest element

CS1102S: Data Structures and Algorithms 07 A: Sorting I 6

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Comparison-based Sorting

The only requirement

A comparison function for elements

The only operation

Comparisons are the only operations allowed on elements

CS1102S: Data Structures and Algorithms 07 A: Sorting I 7

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Counter-example: Sorting Small Distinct Integers

Input

Array a of N distinct integers from 1 to M

Sorting algorithm

i n t [] he lper = new i n t [M] ;
for (i n t i =0; i <N; i ++)

he lper [a [i]] = a [i] ;
i n t index = 0;
for (i n t j =0; j <M; j ++)

i f (he lper [j] ! = 0)
a [index ++] = he lper [j] ;

CS1102S: Data Structures and Algorithms 07 A: Sorting I 8

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Counter-example: Sorting Small Distinct Integers

i n t [] he lper = new i n t [M] ;
for (i n t i =0; i <N; i ++)

he lper [a [i]] = a [i] ;
i n t index = 0;
for (i n t j =0; j <M; j ++)

i f (he lper [j] ! = 0)
a [index ++] = he lper [j] ;

Analysis

Runtime O(M + N)

CS1102S: Data Structures and Algorithms 07 A: Sorting I 9

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Counter-example: Sorting Small Distinct Integers

i n t [] he lper = new i n t [M] ;
for (i n t i =0; i <N; i ++)

/ / the f o l l o w i n g l i n e
/ / uses elements as ind i ces !
he lper [a [i]] = a [i] ;

i n t index = 0;
for (i n t j =0; j <M; j ++)

i f (he lper [j] ! = 0)
a [index ++] = he lper [j] ;

CS1102S: Data Structures and Algorithms 07 A: Sorting I 10

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
Comparison-based Sorting
A Counter-Example

Focus: Comparison-based Sorting

The only operation

Comparisons are the only operations allowed on elements

How to proceed

Insertion Sort

A Lower Bound

Shell Sort

Heap Sort

CS1102S: Data Structures and Algorithms 07 A: Sorting I 11

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Idea
Implementation

1 Introduction

2 Insertion Sort
Idea
Implementation

3 A Lower Bound

4 Shell Sort

CS1102S: Data Structures and Algorithms 07 A: Sorting I 12

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Idea
Implementation

Insertion Sort: Idea

Passes

Algorithm proceeds in N − 1 passes

Invariant

After pass i , the elements in positions 0 to i are sorted.

Consequence of Invariant

After N − 1 passes, the elements in positions 0 to N − 1 are
sorted.
That is the whole array!

CS1102S: Data Structures and Algorithms 07 A: Sorting I 13

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Idea
Implementation

How to do a pass?

Pass i

Move element in position i to the left, until it is larger than the
element to the left or until it is at the beginning of the array.

CS1102S: Data Structures and Algorithms 07 A: Sorting I 14

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Idea
Implementation

Insertion Sort

Use of invariant

After pass i , the elements in positions 0 through i are sorted,
provided that before pass i , the elements in positions 0 through
i − 1 are sorted.

CS1102S: Data Structures and Algorithms 07 A: Sorting I 15

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Idea
Implementation

Insertion Sort: Implementation

public s t a t i c <AnyType extends
Comparable<? super AnyType>>

void i n s e r t i o n S o r t (AnyType [] a) {
i n t j ;
for (i n t p = 1; p < a . leng th ; p++) {

AnyType tmp = a [p] ;
for (j = p ; j > 0 &&

tmp . compareTo (a [j − 1]) < 0; j −−)
a [j] = a [j − 1] ;

a [j] = tmp ;
}

}

CS1102S: Data Structures and Algorithms 07 A: Sorting I 16

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

1 Introduction

2 Insertion Sort

3 A Lower Bound
Inversions
Swaps and Inversions
Worst Case
Average Case

4 Shell Sort

CS1102S: Data Structures and Algorithms 07 A: Sorting I 17

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

Basic Operation of Insertion Sort

Basic operation

The main operation of insertion sort is the swapping of two
elements.

How many swaps are needed for sorting?

How many items are “out of place”?

Definition

An inversion in an array a is an ordered pair (i , j) such that
i < j , but a[i] > a[j].

CS1102S: Data Structures and Algorithms 07 A: Sorting I 18

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

Sorting by Removing Inversions

What does a swap do?

A swap removes exactly one inversion!

Consequence

The number of swaps required to sort an array is exactly the
number of inversions in the array.

CS1102S: Data Structures and Algorithms 07 A: Sorting I 19

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

Worst Case

How many inversions in the worst case?

A list sorted in reverse has the maximal number of inversions

Maximal number of inversions

N−1∑

i=0

i = N(N − 1)/2

CS1102S: Data Structures and Algorithms 07 A: Sorting I 20

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

Average Case

How many inversions in the average case?

Consider the number of inversions in an list L and its reverse Lr .

Consider a pair of elements (x , y)

Either (x , y) is an inversion in L, or in Lr !

Overall

The sum of inversions of L and Lr together is N(N − 1)/2.

Overall average

The overall average of inversions in a given list is N(N − 1)/4

CS1102S: Data Structures and Algorithms 07 A: Sorting I 21

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

Runtime of Swapping Sorting Algorithms

Theorem

Any algorithm that sorts its elements by swapping runs in
Ω(N2).

Theorem

Any algorithm that removes one inversion in each step runs in
Θ(N2).

CS1102S: Data Structures and Algorithms 07 A: Sorting I 22

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

1 Introduction

2 Insertion Sort

3 A Lower Bound

4 Shell Sort
Implementation
Analysis

CS1102S: Data Structures and Algorithms 07 A: Sorting I 23

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

Idea

Main idea

Proceed in passes h1, h2, . . . , ht , making sure that after each
pass, a[i] ≤ a[i + hk].

Invariant

After pass hk , elements are still hk+1 sorted

CS1102S: Data Structures and Algorithms 07 A: Sorting I 24

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

Shell Sort: Example using {1, 3, 5}

CS1102S: Data Structures and Algorithms 07 A: Sorting I 25

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

Shell Sort: Implementation

public s t a t i c <AnyType extends
Comparable<? super AnyType>>

void s h e l l s o r t (AnyType [] a) {
i n t j ;
for (i n t gap = a . leng th / 2 ; gap > 0; gap /= 2)

for (i n t i = gap ; i < a . leng th ; i ++) {
AnyType tmp = a [i] ;
for (j = i ;

j >= gap &&
tmp . compareTo (a [j − gap]) < 0;
j −= gap)

a [j] = a [j − gap] ;
a [j] = tmp ; } }

CS1102S: Data Structures and Algorithms 07 A: Sorting I 26

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

Shell’s Increments

CS1102S: Data Structures and Algorithms 07 A: Sorting I 27

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

Analysis

Shell’s Increments

The worst-case running time of Shellsort, using Shell’s
increments 1, 2, 4, . . . ,, is Θ(N2).

Hibbards’s Increments

The worst-case running time of Shellsort, using Hibbard’s
increments 1, 3, 7, . . . , 2k − 1, is Θ(N3/2).

CS1102S: Data Structures and Algorithms 07 A: Sorting I 28

Introduction
Insertion Sort

A Lower Bound
Shell Sort

Implementation
Analysis

What Next?

Tutorial tomorrow:
Lab 7: solution and discussion
Section 5.4: Hashtables with probing
Questions/clarifications on Assignment 3 (due on Friday)

Friday 5/3: Sorting II (Heapsort, Mergesort)

Wednesday 10/3: Sorting III (Quicksort)

Friday 12/3: Midterm 2: Trees, Hashing, Priority Queues,
Sorting I + II

CS1102S: Data Structures and Algorithms 07 A: Sorting I 29

	Introduction
	Flashback: Priority Queues
	Comparison-based Sorting
	A Counter-Example

	Insertion Sort
	Idea
	Implementation

	A Lower Bound
	Inversions
	Swaps and Inversions
	Worst Case
	Average Case

	Shell Sort
	Implementation
	Analysis

