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Flashback: Priority Queues

Main idea

Keep elements in complete binary tree with parent element
always bigger than child elements

Requirement

Elements are ordered (Comparable or through Comparator)
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Flashback: Hashing

Main idea

Compute hash value for elements; use hash value as index into
array

Requirement

Given mapping of elements to their hash value
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Sorting

Input

Unsorted array of elements

Behavior

Rearrange elements of array such that the smallest appears
first, followed by the second smallest etc, finally followed by the
largest element
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Comparison-based Sorting

The only requirement

A comparison function for elements

The only operation

Comparisons are the only operations allowed on elements
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Counter-example: Sorting Small Distinct Integers

Input

Array a of N distinct integers from 1 to M

Sorting algorithm

i n t [ ] he lper = new i n t [M] ;
for ( i n t i =0; i <N; i ++)

he lper [ a [ i ] ] = a [ i ] ;
i n t index = 0;
for ( i n t j =0; j <M; j ++)

i f ( he lper [ j ] ! = 0 )
a [ index ++] = he lper [ j ] ;
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Counter-example: Sorting Small Distinct Integers

i n t [ ] he lper = new i n t [M] ;
for ( i n t i =0; i <N; i ++)

he lper [ a [ i ] ] = a [ i ] ;
i n t index = 0;
for ( i n t j =0; j <M; j ++)

i f ( he lper [ j ] ! = 0 )
a [ index ++] = he lper [ j ] ;

Analysis

Runtime O(M + N)
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Counter-example: Sorting Small Distinct Integers

i n t [ ] he lper = new i n t [M] ;
for ( i n t i =0; i <N; i ++)

/ / the f o l l o w i n g l i n e
/ / uses elements as ind i ces !
he lper [ a [ i ] ] = a [ i ] ;

i n t index = 0;
for ( i n t j =0; j <M; j ++)

i f ( he lper [ j ] ! = 0 )
a [ index ++] = he lper [ j ] ;

CS1102S: Data Structures and Algorithms 07 A: Sorting I 10



Introduction
Insertion Sort

A Lower Bound
Shell Sort

Flashback: Priority Queues
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A Counter-Example

Focus: Comparison-based Sorting

The only operation

Comparisons are the only operations allowed on elements

How to proceed

Insertion Sort

A Lower Bound

Shell Sort

Heap Sort
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Insertion Sort: Idea

Passes

Algorithm proceeds in N − 1 passes

Invariant

After pass i , the elements in positions 0 to i are sorted.

Consequence of Invariant

After N − 1 passes, the elements in positions 0 to N − 1 are
sorted.
That is the whole array!
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Implementation

How to do a pass?

Pass i

Move element in position i to the left, until it is larger than the
element to the left or until it is at the beginning of the array.
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Insertion Sort

Use of invariant

After pass i , the elements in positions 0 through i are sorted,
provided that before pass i , the elements in positions 0 through
i − 1 are sorted.
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Insertion Sort: Implementation

public s t a t i c <AnyType extends
Comparable<? super AnyType>>

void i n s e r t i o n S o r t ( AnyType [ ] a ) {
i n t j ;
for ( i n t p = 1; p < a . leng th ; p++ ) {

AnyType tmp = a [ p ] ;
for ( j = p ; j > 0 &&

tmp . compareTo ( a [ j − 1 ] ) < 0; j −−)
a [ j ] = a [ j − 1 ] ;

a [ j ] = tmp ;
}

}
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Basic Operation of Insertion Sort

Basic operation

The main operation of insertion sort is the swapping of two
elements.

How many swaps are needed for sorting?

How many items are “out of place”?

Definition

An inversion in an array a is an ordered pair (i , j) such that
i < j , but a[i] > a[j].
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Sorting by Removing Inversions

What does a swap do?

A swap removes exactly one inversion!

Consequence

The number of swaps required to sort an array is exactly the
number of inversions in the array.

CS1102S: Data Structures and Algorithms 07 A: Sorting I 19



Introduction
Insertion Sort

A Lower Bound
Shell Sort

Inversions
Swaps and Inversions
Worst Case
Average Case

Worst Case

How many inversions in the worst case?

A list sorted in reverse has the maximal number of inversions

Maximal number of inversions

N−1∑

i=0

i = N(N − 1)/2
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Average Case

How many inversions in the average case?

Consider the number of inversions in an list L and its reverse Lr .

Consider a pair of elements (x , y)

Either (x , y) is an inversion in L, or in Lr !

Overall

The sum of inversions of L and Lr together is N(N − 1)/2.

Overall average

The overall average of inversions in a given list is N(N − 1)/4
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Runtime of Swapping Sorting Algorithms

Theorem

Any algorithm that sorts its elements by swapping runs in
Ω(N2).

Theorem

Any algorithm that removes one inversion in each step runs in
Θ(N2).
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Idea

Main idea

Proceed in passes h1, h2, . . . , ht , making sure that after each
pass, a[i] ≤ a[i + hk ].

Invariant

After pass hk , elements are still hk+1 sorted
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Shell Sort: Example using {1, 3, 5}
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Shell Sort: Implementation

public s t a t i c <AnyType extends
Comparable<? super AnyType>>

void s h e l l s o r t ( AnyType [ ] a ) {
i n t j ;
for ( i n t gap = a . leng th / 2 ; gap > 0; gap /= 2)

for ( i n t i = gap ; i < a . leng th ; i ++) {
AnyType tmp = a [ i ] ;
for ( j = i ;

j >= gap &&
tmp . compareTo ( a [ j − gap ] ) < 0;
j −= gap )

a [ j ] = a [ j − gap ] ;
a [ j ] = tmp ; } }
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Analysis

Shell’s Increments

The worst-case running time of Shellsort, using Shell’s
increments 1, 2, 4, . . . ,, is Θ(N2).

Hibbards’s Increments

The worst-case running time of Shellsort, using Hibbard’s
increments 1, 3, 7, . . . , 2k − 1, is Θ(N3/2).
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What Next?

Tutorial tomorrow:
Lab 7: solution and discussion
Section 5.4: Hashtables with probing
Questions/clarifications on Assignment 3 (due on Friday)

Friday 5/3: Sorting II (Heapsort, Mergesort)

Wednesday 10/3: Sorting III (Quicksort)

Friday 12/3: Midterm 2: Trees, Hashing, Priority Queues,
Sorting I + II
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