07 A: Sorting I

CS1102S: Data Structures and Algorithms

Martin Henz

March 3, 2010

Generated on Tuesday 2nd March, 2010, 10:59

CS1102S: Data Structures and Algorithms 07 A: Sorting I

Introduction

- Insertion Sort
- 3 A Lower Bound

4 Shell Sort

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

1 Introduction

- Flashback: Priority Queues
- Comparison-based Sorting
- A Counter-Example

Inse

Insertion Sort

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Flashback: Priority Queues

Main idea

Keep elements in complete binary tree with parent element always bigger than child elements

Requirement

Elements are ordered (Comparable or through Comparator)

Introduction

Insertion Sort A Lower Bound Shell Sort Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Flashback: Hashing

Main idea

Compute hash value for elements; use hash value as index into array

Requirement Given mapping of elements to their hash value

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Sorting

Input

Unsorted array of elements

Behavior

Rearrange elements of array such that the smallest appears first, followed by the second smallest etc, finally followed by the largest element

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Comparison-based Sorting

The only requirement

A comparison function for elements

The only operation

Comparisons are the only operations allowed on elements

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Counter-example: Sorting Small Distinct Integers

Input Array a of *N* distinct integers from 1 to *M*

```
Sorting algorithm
```

```
int[] helper = new int[M];
for (int i=0; i<N; i++)
    helper[a[i]] = a[i];
int index = 0;
for (int j=0; j<M; j++)
    if (helper[j]!=0)
        a[index++] = helper[j];
```

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Counter-example: Sorting Small Distinct Integers

```
int[] helper = new int[M];
for (int i=0; i<N; i++)
    helper[a[i]] = a[i];
int index = 0;
for (int j=0; j<M; j++)
    if (helper[j]!=0)
        a[index++] = helper[j];
```

Analysis

Runtime O(M + N)

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Counter-example: Sorting Small Distinct Integers

Flashback: Priority Queues Comparison-based Sorting A Counter-Example

Focus: Comparison-based Sorting

The only operation

Comparisons are the only operations allowed on elements

How to proceed

- Insertion Sort
- A Lower Bound
- Shell Sort
- Heap Sort

Idea Implementation

Insertion Sort

- Idea
- Implementation

Idea Implementation

Insertion Sort: Idea

Passes Algorithm proceeds in N - 1 passes

Invariant

After pass *i*, the elements in positions 0 to *i* are sorted.

Consequence of Invariant

After N - 1 passes, the elements in positions 0 to N - 1 are sorted.

That is the whole array!

ldea Implementation

How to do a pass?

Pass i

Move element in position *i* to the left, until it is larger than the element to the left or until it is at the beginning of the array.

Original	34	8	64	51	32	21	Positions Moved
After $p = 1$	8	34	64	51	32	21	1
After $p = 2$	8	34	64	51	32	21	0
After $p = 3$	8	34	51	64	32	21	1
After $p = 4$	8	32	34	51	64	21	3
After $p = 5$	8	21	32	34	51	64	4

Introduction	
Insertion Sort	Idea
A Lower Bound Shell Sort	Implementation

Insertion Sort

Original	34	8	64	51	32	21	Positions Moved
After $p = 1$	8	34	64	51	32	21	1
After $p = 2$	8	34	64	51	32	21	0
After $p = 3$	8	34	51	64	32	21	1
After $p = 4$	8	32	34	51	64	21	3
After $p = 5$	8	21	32	34	51	64	4

Use of invariant

After pass *i*, the elements in positions 0 through *i* are sorted, provided that before pass *i*, the elements in positions 0 through i - 1 are sorted.

Idea Implementation

Insertion Sort: Implementation

```
public static <AnyType extends
               Comparable<? super AnyType>>
void insertionSort(AnyType[] a) {
   int j;
   for( int p = 1; p < a.length; p++ ) {
      AnyType tmp = a[ p ];
      for (i = p; i > 0 \&\&
           tmp.compareTo(a[i - 1]) < 0; i - -)
         a[i] = a[i - 1];
      a[i] = tmp:
}
```

Inversions Swaps and Inversions Worst Case Average Case

Introduction

Insertion Sort

- A Lower Bound
- Inversions
- Swaps and Inversions
- Worst Case
- Average Case

Inversions Swaps and Inversions Worst Case Average Case

Basic Operation of Insertion Sort

Basic operation

The main operation of insertion sort is the *swapping of two elements*.

How many swaps are needed for sorting?

How many items are "out of place"?

Definition An *inversion* in an array *a* is an ordered pair (i, j) such that i < j, but a[i] > a[j].

Inversions Swaps and Inversions Worst Case Average Case

Sorting by Removing Inversions

What does a swap do?

A swap removes exactly one inversion!

Consequence

The number of swaps required to sort an array is exactly the number of inversions in the array.

Inversions Swaps and Inversions Worst Case Average Case

Worst Case

How many inversions in the worst case?

A list sorted in reverse has the maximal number of inversions

Maximal number of inversions

$$\sum_{i=0}^{N-1} i = N(N-1)/2$$

Inversions Swaps and Inversions Worst Case Average Case

Average Case

How many inversions in the average case?

Consider the number of inversions in an list L and its reverse L_r .

Consider a pair of elements (x, y)

Either (x, y) is an inversion in *L*, or in L_r !

Overall

The sum of inversions of *L* and L_r together is N(N-1)/2.

Overall average

The overall average of inversions in a given list is N(N-1)/4

Inversions Swaps and Inversions Worst Case Average Case

Runtime of Swapping Sorting Algorithms

Theorem

Any algorithm that sorts its elements by swapping runs in $\Omega(N^2)$.

Theorem

Any algorithm that removes one inversion in each step runs in $\Theta(N^2)$.

Implementation Analysis

Introduction

Insertion Sort

Shell Sort

- Implementation
- Analysis

	Introduction Insertion Sort A Lower Bound Shell Sort	Implementation Analysis
ldea		

Main idea

Proceed in passes $h_1, h_2, ..., h_t$, making sure that after each pass, $a[i] \le a[i + h_k]$.

Invariant After pass h_k , elements are still h_{k+1} sorted

Implementation Analysis

Shell Sort: Example using $\{1, 3, 5\}$

Original	81	94	11	96	12	35	17	95	28	58	41	75	15
After 5-sort	35	17	11	28	12	41	75	15	96	58	81	94	95
After 3-sort	28	12	11	35	15	41	58	17	94	75	81	96	95
After 1-sort	11	12	15	17	28	35	41	58	75	81	94	95	96

Implementation Analysis

Shell Sort: Implementation

```
public static <AnyType extends
               Comparable<? super AnyType>>
void shellsort(AnyType [ ] a) {
   int j;
   for (int gap = a length / 2; gap > 0; gap /= 2)
      for (int i = gap; i < a.length; i++) {
        AnyType tmp = a[i];
         for(i = i)
             i >= gap &&
             tmp.compareTo(a[j - gap]) < 0;
             i = gap
            a[i] = a[i - gap];
         a[i] = tmp; \}
```

Implementation Analysis

Shell's Increments

Start	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 8-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 4-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 2-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 1-sort	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Implementation Analysis

Analysis

Shell's Increments

The worst-case running time of Shellsort, using Shell's increments 1, 2, 4, ..., is $\Theta(N^2)$.

Hibbards's Increments

The worst-case running time of Shellsort, using Hibbard's increments $1, 3, 7, ..., 2^k - 1$, is $\Theta(N^{3/2})$.

Implementation Analysis

What Next?

- Tutorial tomorrow:
 - Lab 7: solution and discussion
 - Section 5.4: Hashtables with probing
 - Questions/clarifications on Assignment 3 (due on Friday)
- Friday 5/3: Sorting II (Heapsort, Mergesort)
- Wednesday 10/3: Sorting III (Quicksort)
- Friday 12/3: Midterm 2: Trees, Hashing, Priority Queues, Sorting I + II