
Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

08 A: Sorting III

CS1102S: Data Structures and Algorithms

Martin Henz

March 10, 2010

Generated on Wednesday 10th March, 2010, 09:36

CS1102S: Data Structures and Algorithms 08 A: Sorting III 1

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

1 Recap: Sorting Algorithms

2 Analysis of Mergesort

3 Quicksort

4 A General Lower Bound for Sorting

CS1102S: Data Structures and Algorithms 08 A: Sorting III 2

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

1 Recap: Sorting Algorithms
Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

2 Analysis of Mergesort

3 Quicksort

4 A General Lower Bound for Sorting

CS1102S: Data Structures and Algorithms 08 A: Sorting III 3

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Sorting

Input

Unsorted array of elements

Behavior

Rearrange elements of array such that the smallest appears
first, followed by the second smallest etc, finally followed by the
largest element

CS1102S: Data Structures and Algorithms 08 A: Sorting III 4

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Comparison-based Sorting

The only requirement

A comparison function for elements

The only operation

Comparisons are the only operations allowed on elements
(compare with Bucket Sort at the end of the lecture)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 5

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Insertion Sort: Idea

Passes

Algorithm proceeds in N − 1 passes

Invariant

After pass i , the elements in positions 0 to i are sorted.

Consequence of Invariant

After N − 1 passes, the whole array is sorted.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 6

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Shell Sort: Idea

Main idea

Proceed in passes h1, h2, . . . , ht , making sure that after each
pass, a[i] ≤ a[i + hk].

Invariant

After pass hk , elements are still hk+1 sorted

CS1102S: Data Structures and Algorithms 08 A: Sorting III 7

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Analysis

Shell’s Increments

The worst-case running time of Shellsort, using Shell’s
increments 1, 2, 4, . . . ,, is Θ(N2).

Hibbards’s Increments

The worst-case running time of Shellsort, using Hibbard’s
increments 1, 3, 7, . . . , 2k − 1, is Θ(N3/2).

CS1102S: Data Structures and Algorithms 08 A: Sorting III 8

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Heapsort: Idea

Use heap to sort

Build heap from unsorted array (using percolateDown)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 9

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Heapsort: Idea

Use heap to sort

Build heap from unsorted array (using percolateDown)

Repeatedly take maximal element (using deleteMax)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 10

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Heapsort: Idea

Use heap to sort

Build heap from unsorted array (using percolateDown)

Repeatedly take maximal element (using deleteMax)

Reuse memory

Use free memory at the end of the heap in order to store the
maximal element, leading to sorted array.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 11

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Mergesort: Idea

Split unsorted arrays into two halves

CS1102S: Data Structures and Algorithms 08 A: Sorting III 12

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Mergesort: Idea

Split unsorted arrays into two halves

Sort the two halves

CS1102S: Data Structures and Algorithms 08 A: Sorting III 13

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Mergesort: Idea

Split unsorted arrays into two halves

Sort the two halves

Merge the two sorted halves

CS1102S: Data Structures and Algorithms 08 A: Sorting III 14

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Merging Two Sorted Arrays

Use two pointers, one for each sorted array

CS1102S: Data Structures and Algorithms 08 A: Sorting III 15

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Merging Two Sorted Arrays

Use two pointers, one for each sorted array
Compare values at pointer positions

CS1102S: Data Structures and Algorithms 08 A: Sorting III 16

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Merging Two Sorted Arrays

Use two pointers, one for each sorted array
Compare values at pointer positions

Copy the smaller values into sorted array

CS1102S: Data Structures and Algorithms 08 A: Sorting III 17

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Merging Two Sorted Arrays

Use two pointers, one for each sorted array
Compare values at pointer positions

Copy the smaller values into sorted array
Advance the pointer that pointed at smaller value

CS1102S: Data Structures and Algorithms 08 A: Sorting III 18

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Example

Sort the array

26 13 1 14 15 38 2 27

CS1102S: Data Structures and Algorithms 08 A: Sorting III 19

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

1 Recap: Sorting Algorithms

2 Analysis of Mergesort

3 Quicksort

4 A General Lower Bound for Sorting

CS1102S: Data Structures and Algorithms 08 A: Sorting III 20

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Analysis of Mergesort

Assumption

For simplicity: Array size N is a power of 2

CS1102S: Data Structures and Algorithms 08 A: Sorting III 21

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Analysis of Mergesort

Assumption

For simplicity: Array size N is a power of 2

Runtime T (N)

T (1) = 1

T (N) = 2T (N/2) + N

CS1102S: Data Structures and Algorithms 08 A: Sorting III 22

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Runtime of Mergesort

Theorem

T (N) = O(N log N)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 23

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Runtime of Mergesort

Theorem

T (N) = O(N log N)

Two Proof Techniques

Telescoping a sum

Continuous substitution

CS1102S: Data Structures and Algorithms 08 A: Sorting III 24

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

1 Recap: Sorting Algorithms

2 Analysis of Mergesort

3 Quicksort
Idea
Implementation
Analysis of Quicksort

4 A General Lower Bound for Sorting

CS1102S: Data Structures and Algorithms 08 A: Sorting III 25

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Quicksort: Idea

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 26

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Quicksort: Idea

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

Idea of Quicksort

Split array in two (linear); sort the two (recursively); merge
(trivial)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 27

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Quicksort: Idea

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

Idea of Quicksort

Split array in two (linear); sort the two (recursively); merge
(trivial)

Splitting in Quicksort

For merging to be trivial, splitting is done around a pivot
element. The first array contains the elements smaller than
pivot; the second the elements larger than pivot

CS1102S: Data Structures and Algorithms 08 A: Sorting III 28

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Example

CS1102S: Data Structures and Algorithms 08 A: Sorting III 29

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Questionable Choice of Pivot

Often, the pivot is chosen to be the first element

CS1102S: Data Structures and Algorithms 08 A: Sorting III 30

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Questionable Choice of Pivot

Often, the pivot is chosen to be the first element

This is only ok if the input array is random

CS1102S: Data Structures and Algorithms 08 A: Sorting III 31

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Questionable Choice of Pivot

Often, the pivot is chosen to be the first element

This is only ok if the input array is random

If the input array has some order (almost sorted, or almost
sorted in reverse), the pivot needs to be chosen differently

CS1102S: Data Structures and Algorithms 08 A: Sorting III 32

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Common Choice of Pivot

A safe choice

Choosing a random element as pivot is a good choice in all
cases.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 33

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Common Choice of Pivot

A safe choice

Choosing a random element as pivot is a good choice in all
cases.
Random number generation is a bit of an overkill for choosing a
pivot.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 34

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Common Choice of Pivot

A safe choice

Choosing a random element as pivot is a good choice in all
cases.
Random number generation is a bit of an overkill for choosing a
pivot.

Median-of-three

A choice that works well in practice is to choose the median of
the first, last and middle elements

CS1102S: Data Structures and Algorithms 08 A: Sorting III 35

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Implementation: Driver

public s t a t i c <AnyType extends
Comparable<? super AnyType>>

void q u i c k s o r t (AnyType [] a) {
q u i c k s o r t (a , 0 , a . leng th − 1) ;

}

CS1102S: Data Structures and Algorithms 08 A: Sorting III 36

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Implementation: Median-of-three Partitioning

private s t a t i c <AnyType extends Comparable<? super A
AnyType median3 (AnyType [] a , i n t l e f t , i n t r i g h t) {

i n t center = (l e f t + r i g h t) / 2 ;
i f (a [center] . compareTo (a [l e f t]) < 0)

swapReferences (a , l e f t , center) ;
i f (a [r i g h t] . compareTo (a [l e f t]) < 0)

swapReferences (a , l e f t , r i g h t) ;
i f (a [r i g h t] . compareTo (a [center]) < 0)

swapReferences (a , center , r i g h t) ;
swapReferences (a , center , r i g h t − 1) ;
return a [r i g h t − 1] ;

}

CS1102S: Data Structures and Algorithms 08 A: Sorting III 37

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Implementation: Main Routine

void q u i c k s o r t (AnyType [] a , i n t l e f t , i n t r i g h t) {
i f (l e f t + CUTOFF <= r i g h t) {

AnyType p i v o t = median3 (a , l e f t , r i g h t) ;
i n t i = l e f t , j = r i g h t − 1;
for (; ;) {

while (a [++ i] . compareTo (p i v o t) < 0) { }
while (a [−− j] . compareTo (p i v o t) > 0) { }
i f (i < j) swapReferences (a , i , j) ;
else break ; }

swapReferences (a , i , r i g h t − 1) ;
q u i c k s o r t (a , l e f t , i − 1) ;
q u i c k s o r t (a , i + 1 , r i g h t) ;

} else i n s e r t i o n S o r t (a , l e f t , r i g h t) ; }

CS1102S: Data Structures and Algorithms 08 A: Sorting III 38

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Runtime of Quicksort

Definition

Let i = |Si | be the number of elements in the first partition

CS1102S: Data Structures and Algorithms 08 A: Sorting III 39

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Runtime of Quicksort

Definition

Let i = |Si | be the number of elements in the first partition

Basic Quicksort relation

T (N) = T (i) + T (N − i − 1) + cN

CS1102S: Data Structures and Algorithms 08 A: Sorting III 40

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Worst-case Analysis

The worst case

occurs when the pivot is always the smallest (or largest)
element

CS1102S: Data Structures and Algorithms 08 A: Sorting III 41

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Worst-case Analysis

The worst case

occurs when the pivot is always the smallest (or largest)
element

Uneven split

T (N) = T (N − 1) + 0 + cN

CS1102S: Data Structures and Algorithms 08 A: Sorting III 42

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Worst-case Analysis

Adding up

T (N) = T (N − 1) + 0 + cN = T (1) + c
N∑

i=2

i = O(N2)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 43

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Best-case Analysis

The best case

occurs when the pivot is always the element exactly in the
middle; both partitions have equal size

CS1102S: Data Structures and Algorithms 08 A: Sorting III 44

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Best-case Analysis

The best case

occurs when the pivot is always the element exactly in the
middle; both partitions have equal size

Even split

T (N) = 2T (N/2) + cN

CS1102S: Data Structures and Algorithms 08 A: Sorting III 45

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Best-case Analysis

The best case

occurs when the pivot is always the element exactly in the
middle; both partitions have equal size

Even split

T (N) = 2T (N/2) + cN

Similar to Mergesort

T (N) = O(N log N)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 46

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Average Case of Quicksort

Similar to best case

T (N) = O(N log N)

CS1102S: Data Structures and Algorithms 08 A: Sorting III 47

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

1 Recap: Sorting Algorithms

2 Analysis of Mergesort

3 Quicksort

4 A General Lower Bound for Sorting

CS1102S: Data Structures and Algorithms 08 A: Sorting III 48

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Decision Trees

Root of decision tree

Root is initial state of algorithm

CS1102S: Data Structures and Algorithms 08 A: Sorting III 49

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Decision Trees

Root of decision tree

Root is initial state of algorithm

Edges of decision tree

An edge represents the outcome of a comparison

CS1102S: Data Structures and Algorithms 08 A: Sorting III 50

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Decision Trees

Root of decision tree

Root is initial state of algorithm

Edges of decision tree

An edge represents the outcome of a comparison

Leaves

Each path to a leaf represents a run of the algorithm

CS1102S: Data Structures and Algorithms 08 A: Sorting III 51

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Worst-Case Runtime

Worst-case in terms of tree depth

The number of comparisons required in the worst case is the
depth of the deepest leaf

CS1102S: Data Structures and Algorithms 08 A: Sorting III 52

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Example

CS1102S: Data Structures and Algorithms 08 A: Sorting III 53

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Some Useful Facts

Leaves in binary tree

Let T be a binary tree of depth d . Then T has at most 2d

leaves.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 54

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Some Useful Facts

Leaves in binary tree

Let T be a binary tree of depth d . Then T has at most 2d

leaves.

Depth of a binary tree

A binary tree with L leaves must have depth at least ⌈log L⌉.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 55

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Some Useful Facts

Leaves in binary tree

Let T be a binary tree of depth d . Then T has at most 2d

leaves.

Depth of a binary tree

A binary tree with L leaves must have depth at least ⌈log L⌉.

Comparisons for sorting

Any sorting algorithm that uses only comparisons between
elements requires at least ⌈log(N!)⌉ comparisons in the worst
case.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 56

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Main Theorem

Theorem

Any sorting algorithm that uses only comparisons between
elements requires Ω(N log N) comparisons.

CS1102S: Data Structures and Algorithms 08 A: Sorting III 57

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Main Theorem

Theorem

Any sorting algorithm that uses only comparisons between
elements requires Ω(N log N) comparisons.

Proof

Prove that log(N!) ≥ Ω(N log N).

CS1102S: Data Structures and Algorithms 08 A: Sorting III 58

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

CS1102S: Data Structures and Algorithms 08 A: Sorting III 59

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

CS1102S: Data Structures and Algorithms 08 A: Sorting III 60

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

Cost of comparisons: Comparator and Comparable require
method calls for comparison, whereas comparisons are
often inlined in C++

CS1102S: Data Structures and Algorithms 08 A: Sorting III 61

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

Cost of comparisons: Comparator and Comparable require
method calls for comparison, whereas comparisons are
often inlined in C++
Mergesort is known to have lowest number of comparisons
among the popular sorting algorithms

CS1102S: Data Structures and Algorithms 08 A: Sorting III 62

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

Cost of comparisons: Comparator and Comparable require
method calls for comparison, whereas comparisons are
often inlined in C++
Mergesort is known to have lowest number of comparisons
among the popular sorting algorithms

Cost of moving elements: In Java, only references are
changed; in C++ often objects themselves need to be
moved

CS1102S: Data Structures and Algorithms 08 A: Sorting III 63

Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Next Week

Friday: Midterm 2

Topics: search, heaps, hashing, sorting

CS1102S: Data Structures and Algorithms 08 A: Sorting III 64

	Recap: Sorting Algorithms
	Sorting
	Insertion Sort
	Shell Sort
	Heapsort
	Mergesort

	Analysis of Mergesort
	Quicksort
	Idea
	Implementation
	Analysis of Quicksort

	A General Lower Bound for Sorting

