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Sorting

Input

Unsorted array of elements

Behavior

Rearrange elements of array such that the smallest appears
first, followed by the second smallest etc, finally followed by the
largest element
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Comparison-based Sorting

The only requirement

A comparison function for elements

The only operation

Comparisons are the only operations allowed on elements
(compare with Bucket Sort at the end of the lecture)
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Insertion Sort: Idea

Passes

Algorithm proceeds in N − 1 passes

Invariant

After pass i , the elements in positions 0 to i are sorted.

Consequence of Invariant

After N − 1 passes, the whole array is sorted.
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Shell Sort: Idea

Main idea

Proceed in passes h1, h2, . . . , ht , making sure that after each
pass, a[i] ≤ a[i + hk ].

Invariant

After pass hk , elements are still hk+1 sorted
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Analysis

Shell’s Increments

The worst-case running time of Shellsort, using Shell’s
increments 1, 2, 4, . . . ,, is Θ(N2).

Hibbards’s Increments

The worst-case running time of Shellsort, using Hibbard’s
increments 1, 3, 7, . . . , 2k − 1, is Θ(N3/2).

CS1102S: Data Structures and Algorithms 08 A: Sorting III 8



Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Sorting
Insertion Sort
Shell Sort
Heapsort
Mergesort

Heapsort: Idea

Use heap to sort

Build heap from unsorted array (using percolateDown)
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Heapsort: Idea

Use heap to sort

Build heap from unsorted array (using percolateDown)

Repeatedly take maximal element (using deleteMax)
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Heapsort: Idea

Use heap to sort

Build heap from unsorted array (using percolateDown)

Repeatedly take maximal element (using deleteMax)

Reuse memory

Use free memory at the end of the heap in order to store the
maximal element, leading to sorted array.
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Mergesort: Idea

Split unsorted arrays into two halves
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Mergesort: Idea

Split unsorted arrays into two halves

Sort the two halves
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Mergesort: Idea

Split unsorted arrays into two halves

Sort the two halves

Merge the two sorted halves
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Merging Two Sorted Arrays

Use two pointers, one for each sorted array
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Merging Two Sorted Arrays

Use two pointers, one for each sorted array
Compare values at pointer positions
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Merging Two Sorted Arrays

Use two pointers, one for each sorted array
Compare values at pointer positions

Copy the smaller values into sorted array
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Merging Two Sorted Arrays

Use two pointers, one for each sorted array
Compare values at pointer positions

Copy the smaller values into sorted array
Advance the pointer that pointed at smaller value
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Example

Sort the array

26 13 1 14 15 38 2 27
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Assumption

For simplicity: Array size N is a power of 2
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Analysis of Mergesort

Assumption

For simplicity: Array size N is a power of 2

Runtime T (N)

T (1) = 1

T (N) = 2T (N/2) + N
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Runtime of Mergesort

Theorem

T (N) = O(N log N)
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Runtime of Mergesort

Theorem

T (N) = O(N log N)

Two Proof Techniques

Telescoping a sum

Continuous substitution
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Quicksort: Idea

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)
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Quicksort: Idea

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

Idea of Quicksort

Split array in two (linear); sort the two (recursively); merge
(trivial)
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Quicksort: Idea

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

Idea of Quicksort

Split array in two (linear); sort the two (recursively); merge
(trivial)

Splitting in Quicksort

For merging to be trivial, splitting is done around a pivot
element. The first array contains the elements smaller than
pivot; the second the elements larger than pivot
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Questionable Choice of Pivot

Often, the pivot is chosen to be the first element
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Questionable Choice of Pivot

Often, the pivot is chosen to be the first element

This is only ok if the input array is random
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Questionable Choice of Pivot

Often, the pivot is chosen to be the first element

This is only ok if the input array is random

If the input array has some order (almost sorted, or almost
sorted in reverse), the pivot needs to be chosen differently
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Common Choice of Pivot

A safe choice

Choosing a random element as pivot is a good choice in all
cases.
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Common Choice of Pivot

A safe choice

Choosing a random element as pivot is a good choice in all
cases.
Random number generation is a bit of an overkill for choosing a
pivot.
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Common Choice of Pivot

A safe choice

Choosing a random element as pivot is a good choice in all
cases.
Random number generation is a bit of an overkill for choosing a
pivot.

Median-of-three

A choice that works well in practice is to choose the median of
the first, last and middle elements

CS1102S: Data Structures and Algorithms 08 A: Sorting III 35



Recap: Sorting Algorithms
Analysis of Mergesort

Quicksort
A General Lower Bound for Sorting

Idea
Implementation
Analysis of Quicksort

Implementation: Driver

public s t a t i c <AnyType extends
Comparable<? super AnyType>>

void q u i c k s o r t ( AnyType [ ] a ) {
q u i c k s o r t ( a , 0 , a . leng th − 1 ) ;

}
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Implementation: Median-of-three Partitioning

private s t a t i c <AnyType extends Comparable<? super A
AnyType median3 ( AnyType [ ] a , i n t l e f t , i n t r i g h t ) {

i n t center = ( l e f t + r i g h t ) / 2 ;
i f ( a [ center ] . compareTo ( a [ l e f t ] ) < 0 )

swapReferences ( a , l e f t , center ) ;
i f ( a [ r i g h t ] . compareTo ( a [ l e f t ] ) < 0 )

swapReferences ( a , l e f t , r i g h t ) ;
i f ( a [ r i g h t ] . compareTo ( a [ center ] ) < 0 )

swapReferences ( a , center , r i g h t ) ;
swapReferences ( a , center , r i g h t − 1 ) ;
return a [ r i g h t − 1 ] ;

}
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Implementation: Main Routine

void q u i c k s o r t ( AnyType [ ] a , i n t l e f t , i n t r i g h t ) {
i f ( l e f t + CUTOFF <= r i g h t ) {

AnyType p i v o t = median3 ( a , l e f t , r i g h t ) ;
i n t i = l e f t , j = r i g h t − 1;
for ( ; ; ) {

while ( a [ ++ i ] . compareTo ( p i v o t ) < 0 ) { }
while ( a [ −− j ] . compareTo ( p i v o t ) > 0 ) { }
i f ( i < j ) swapReferences ( a , i , j ) ;
else break ; }

swapReferences ( a , i , r i g h t − 1 ) ;
q u i c k s o r t ( a , l e f t , i − 1 ) ;
q u i c k s o r t ( a , i + 1 , r i g h t ) ;

} else i n s e r t i o n S o r t ( a , l e f t , r i g h t ) ; }
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Runtime of Quicksort

Definition

Let i = |Si | be the number of elements in the first partition
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Runtime of Quicksort

Definition

Let i = |Si | be the number of elements in the first partition

Basic Quicksort relation

T (N) = T (i) + T (N − i − 1) + cN
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Worst-case Analysis

The worst case

occurs when the pivot is always the smallest (or largest)
element
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Worst-case Analysis

The worst case

occurs when the pivot is always the smallest (or largest)
element

Uneven split

T (N) = T (N − 1) + 0 + cN
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Worst-case Analysis

Adding up

T (N) = T (N − 1) + 0 + cN = T (1) + c
N∑

i=2

i = O(N2)
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Best-case Analysis

The best case

occurs when the pivot is always the element exactly in the
middle; both partitions have equal size
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Best-case Analysis

The best case

occurs when the pivot is always the element exactly in the
middle; both partitions have equal size

Even split

T (N) = 2T (N/2) + cN
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Best-case Analysis

The best case

occurs when the pivot is always the element exactly in the
middle; both partitions have equal size

Even split

T (N) = 2T (N/2) + cN

Similar to Mergesort

T (N) = O(N log N)
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Average Case of Quicksort

Similar to best case

T (N) = O(N log N)
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Decision Trees

Root of decision tree

Root is initial state of algorithm
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Root of decision tree

Root is initial state of algorithm

Edges of decision tree

An edge represents the outcome of a comparison
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Decision Trees

Root of decision tree

Root is initial state of algorithm

Edges of decision tree

An edge represents the outcome of a comparison

Leaves

Each path to a leaf represents a run of the algorithm
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Worst-Case Runtime

Worst-case in terms of tree depth

The number of comparisons required in the worst case is the
depth of the deepest leaf
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Some Useful Facts

Leaves in binary tree

Let T be a binary tree of depth d . Then T has at most 2d

leaves.
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Some Useful Facts

Leaves in binary tree

Let T be a binary tree of depth d . Then T has at most 2d

leaves.

Depth of a binary tree

A binary tree with L leaves must have depth at least ⌈log L⌉.
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Some Useful Facts

Leaves in binary tree

Let T be a binary tree of depth d . Then T has at most 2d

leaves.

Depth of a binary tree

A binary tree with L leaves must have depth at least ⌈log L⌉.

Comparisons for sorting

Any sorting algorithm that uses only comparisons between
elements requires at least ⌈log(N!)⌉ comparisons in the worst
case.
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Main Theorem

Theorem

Any sorting algorithm that uses only comparisons between
elements requires Ω(N log N) comparisons.
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Main Theorem

Theorem

Any sorting algorithm that uses only comparisons between
elements requires Ω(N log N) comparisons.

Proof

Prove that log(N!) ≥ Ω(N log N).
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Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable
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Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t
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Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

Cost of comparisons: Comparator and Comparable require
method calls for comparison, whereas comparisons are
often inlined in C++
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Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

Cost of comparisons: Comparator and Comparable require
method calls for comparison, whereas comparisons are
often inlined in C++
Mergesort is known to have lowest number of comparisons
among the popular sorting algorithms
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Considerations for Choosing Sorting Algo

Size of array: If array is very small (for example smaller
than 20 or 30 elements), insertion sort is suitable

Cost of memory: Mergesort requires extra array; other
algos don’t

Cost of comparisons: Comparator and Comparable require
method calls for comparison, whereas comparisons are
often inlined in C++
Mergesort is known to have lowest number of comparisons
among the popular sorting algorithms

Cost of moving elements: In Java, only references are
changed; in C++ often objects themselves need to be
moved
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Next Week

Friday: Midterm 2

Topics: search, heaps, hashing, sorting
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