09 A: Graph Algorithms I

CS1102S: Data Structures and Algorithms

Martin Henz

March 17, 2010

Generated on Tuesday 16th March, 2010, 22:51

- Definitions
- 2 Topological Sort
- 3 Shortest-Path Algorithms

- Definitions
 - Graphs
 - Representation of Graphs
- Topological Sort
- 3 Shortest-Path Algorithms

Graph, Vertices, Edges

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Directed graph

If the pairs are ordered, then the graph is directed.

Weight

Sometimes the edges have a third component, knows as either a *weight* or a *cost*. Such graphs are called *weighted graphs*.

Paths

Path

A *path* in a graph is a sequence of vertices $w_1, w_2, w_3, \ldots, w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i < N$. It is said to lead from w_1 of w_N .

Path length

The *length* of a path is the number of edges on the path, namely N-1.

Path with no edges

For any vertex v, a path with no edges always leads from v to v itself.

Graphs
Representation of Graphs

Loops

Loop

An edge (v, v) from a vertex to itself is called a *loop*.

Usually no loops

The graphs we consider here do not have loops.

Simple path

A *simple path* is a path such that all vertices are distinct, except that the first and last could be the same.

Cyclic and Acyclic Graphs

Cycle in a directed graph

A *cycle* in a directed graph is a path of length at least 1 such that $w_1 = w_N$; the cycle is *simple* if the path is simple.

Cycle in an undirected graph

A *cycle* in an undirected graph is a path of length at least 1 such that $w_1 = w_N$ and all edges are distinct.

Directed acyclic graph

A directed graph is acyclic if it has no cycles; it is called a DAG.

Connected Graphs

Connected undirected graph

An undirected graph is *connected* if there is a path from every vertex to every other vertex.

Strongly connected directed graph

A directed graph is *strongly connected* if there is a path from every vertex to every other vertex.

Weakly connected directed graph

A directed graph that is not strongly connected is called *weakly* connected if its undirected version is connected.

Adjacency Matrix

Adjacency matrix

A directed graph can be represented using a two-dimensional boolean array A by setting A[u][v] to true if and only if $(u, v) \in E$.

A weighted directed graph can be represented using a two-dimensional array A whose type is the same as the weight type, by A by setting A[u][v] to the weight of the corresponding edge, using an unambiguous default value if there is no edge.

Space requirement

The space requirement of an adjacency matrix is $\Theta(|V|^2)$. This works well if $|E| = \Theta(|V|^2)$. Such graphs are called *dense*.

Adjacency List

Sparse graphs

Graphs that are not dense are called sparse.

Example

Streets running east-west/north south.

Adjacency list

A directed graph can be represented using an array of lists, containing, for each vertex, all adjacent vertices.

Example Graph

Adjacency List

1	2, 4, 3
2	4, 5
3	6
4	6, 7, 3
5	4, 7
6	(empty)
7	6

- Definitions
- 2 Topological Sort
 - The Problem
 - A Simple Algorithm
 - A Smarter Algorithm
- Shortest-Path Algorithms

The Problem

Topological sort

A *topological sort* is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_j appears *after* v_i in the ordering.

Example: In what order to take modules?

Module prerequisites can be represented by edges in a directed graph

Definitions Topological Sort Shortest-Path Algorithms The Problem
A Simple Algorithm
A Smarter Algorithm

Example

A Simple Algorithm

Idea

Find any vertex with no incoming edges. Print the vertex, remove its edges, and find the next vertex with no incoming edges.

Indegree

The *indegree* of a vertex v is the number of edges of the form (u, v).

Implementation

```
void topsort( ) throws CycleFoundException
    for( int counter = 0; counter < NUM VERTICES; counter++ )
        Vertex v = findNewVertexOfIndegreeZero();
        if(v == null)
            throw new CycleFoundException();
        v.topNum = counter;
        for each Vertex w adjacent to v
           w.indegree--:
```

Runtime Analysis

Setup

Initially, we compute the indegree of each vertex.

Quadratic runtime

Each call of findNewVertexOfIndegreeZero requires O(|V|) time. There are |V| calls, thus overall $O(|V|^2)$.

A Smarter Algorithm

Observation

After each iteration, we visit every vertex; quite wasteful.

Idea

Learn from previous operations by keeping track of the indegrees and the vertices with indegree 0.

Implementation

```
void topsort() throws CycleFoundException
   Queue<Vertex> q = new Queue<Vertex>( );
    int counter = 0;
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );
   while( !q.isEmpty( ) )
        Vertex v = q.dequeue();
       v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
                q.enqueue( w );
    if ( counter != NUM VERTICES )
        throw new CycleFoundException();
```


Indegree Before Dequeue #								
Vertex	1	2	3	4	5	6	7	
v_1	0	0	0	0	0	0	0	
v_2	1	0	0	0	0	0	0	
v_3	2	1	1	1	0	0	0	
v_4	3	2	1	0	0	0	0	
v_5	1	1	0	0	0	0	0	
v_6	3	3	3	3	2	1	0	
v_7	2	2	2	1	0	0	0	
Enqueue	v_1	ν_2	v_5	v_4	v_3, v_7		v_6	
Dequeue	v_1	ν_2	v_5	v_4	v_3	ν_7	v_6	

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

- Definitions
- Topological Sort
- 3 Shortest-Path Algorithms
 - The Problem and Some Variants
 - Unweighted Shortest Paths
 - Dijkstra's Algorithm

The Problem

Input

Weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge.

Weighted path length

Cost of path $v_1 v_2 \cdots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.

Unweighted path length

Length of path $v_1 v_2 \cdots v_N$ is N-1.

Single-Source Shortest-Path Problem

Problem

Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G.

Shortest path from v_1 to v_6 has a cost of 6 and goes from v_1 to v_4 to v_7 to v_6 .

Negative Cost Cycles

path from v_5 to v_4 has cost 1 but a shorter path exists: v_5 to v_4 to v_2 to v_5 to v_4 This is a *negative cost cycle*

Unweighted Shortest Paths: Example

Find the shortest path from v_3 to all other vertices

Idea

Level-order traversal

Start with s (distance 0) and proceed in phases currDist, each time going through all vertices. If vertex is "known" and has distance currDist, set the distance of its neighbors to currDist ± 1 .

Implementation

```
void unweighted( Vertex s )
    for each Vertex v
       v.dist = INFINITY;
       v.known = false:
   s.dist = 0:
    for( int currDist = 0; currDist < NUM VERTICES; currDist++ )
        for each Vertex v
            if( !v.known && v.dist == currDist )
                v.known = true;
                for each Vertex w adjacent to v
                    if( w.dist == INFINITY )
                        w.dist = currDist + 1:
                        w.path = v;
```

Inefficiency

Careless loop

In each phase, we go through all vertices. We can remember the "known" vertices in a data structure.

Suitable data structure

Queue: will contain the vertices in order of increasing distance

Implementation

```
void unweighted( Vertex s )
   Oueue<Vertex> g = new Oueue<Vertex>();
    for each Vertex v
        v.dist = INFINITY;
    s.dist = 0;
   q.enqueue(s);
    while(!q.isEmpty())
       Vertex v = q.dequeue():
        for each Vertex w adjacent to v
            if( w.dist == INFINITY )
               w.dist = v.dist + 1:
               w.path = v;
               a.enqueue( w );
```

Dijkstra's Algorithm: Idea

Idea

Similar to level-order traversal; treat nodes in the order of shortest distance

Greedy algorithm

Dijkstra's algorithm is an example of a class of algorithms that exploit that a local property is at the same time a global property

Initial configuration:

ν	known	d_{v}	p_{v}
v_1	F	0	0
v_2	F	∞	0
v_3	F	∞	0
v_4	F	∞	0
ν ₅	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

After v_1 is declared known:

	• • • • • • • • • • • • • • • • • • • •		
ν	known	d_{v}	p_{γ}
v_1	Т	0	0
v_2	F	2	ν_1
v_3	F	∞	0
v_4	F	1	ν_{1}
v_5	F	∞	0
v_6	F	∞	0
ν_7	F	∞	0

After	<i>V</i> ₄	is	declared
knowr	า:		

KIIOWII.					
ν	known	d_{v}	p_{ν}		
v_1	T	0	0		
ν_2	F	2	v_1		
v_3	F	3	v_4		
ν_4	T	1	v_1		
v_5	F	3	v_4		
v_6	F	9	v_4		
v_7	F	5	v_4		

After	<i>V</i> ₂	is	declared
knowr	٦.		

<u> </u>			
ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	F	3	v_4
v_4	T	1	v_1
v_5	F	3	v_4
v_6	F	9	v_4
ν_7	F	5	v_4

After v_5 and then v_3 are declared known:

ν	known	d_{v}	p_{ν}
$\overline{\nu_1}$	Т	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	ν_1
v_5	T	3	v_4
v_6	F	8	v_3
v_7	F	5	v_4

After	<i>V</i> ₇	is	declared
knowr	า:		

KIIOWII.					
ν	known	d_{v}	p_{ν}		
v_1	Т	0	0		
v_2	T	2	v_1		
v_3	T	3	v_4		
ν_4	T	1	v_1		
v_5	T	3	v_4		
v_6	F	6	v_7		
ν_7	T	5	v_4		

Afte	r <i>v</i> ₆	declare		
<u>kno</u> v	wn:			
ν	knov	vn	d_{v}	p_{ν}
v_1	T		0	0

Summary: Stages of Dijkstra's Algorithm

Data Structure for Vertices

Pseudocode for Dijkstra's Algorithm

```
void dijkstra( Vertex s )
    for each Vertex v
       v.dist = INFINITY;
       v.known = false;
   s.dist = 0;
    for(;;)
       Vertex v = smallest unknown distance vertex:
       if( v == NOT A VERTEX )
           break;
        v.known = true:
       for each Vertex w adjacent to v
           if(!w.known)
               if( v.dist + cvw < w.dist )
                    // Update w
                    decrease( w.dist to v.dist + cvw );
                    w.path = v;
```

Complexity

Naive implementation

Scan all vertices sequentially to find unknown vertex with minimum d_V : O(|V|). Thus overall: $O(|V|^2)$

Priority queue for unknown vertices Runtime can be reduced to $O(|E| \log |V|)$.

This Week

- Thursday tutorials: Midterm 2 and lab tasks 2
- Friday Lecture: Graph Algorithms II
 - Minimum spanning tree
 - Euler paths