09 A: Graph Algorithms I

CS1102S: Data Structures and Algorithms

Martin Henz

March 17, 2010

1 Definitions

2 Topological Sort
(3) Shortest-Path Algorithms

1) Definitions

- Graphs
- Representation of Graphs
(2) Topological Sort
(3) Shortest-Path Algorithms

Graph, Vertices, Edges

Graph
A graph $G=(V, E)$ consists of a set of vertices, V, and a set of edges, E.

Edge

Each edge is a pair (v, w), where $v, w \in V$.
Directed graph
If the pairs are ordered, then the graph is directed.
Weight
Sometimes the edges have a third component, knows as either a weight or a cost. Such graphs are called weighted graphs.

Paths

Path

A path in a graph is a sequence of vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{N}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for $1 \leq i<N$. It is said to lead from w_{1} ot w_{N}.

Path length

The length of a path is the number of edges on the path, namely $N-1$.

Path with no edges
For any vertex v, a path with no edges always leads from v to v itself.

Loops

Loop
An edge (v, v) from a vertex to itself is called a loop.

Usually no loops

The graphs we consider here do not have loops.

Simple path

A simple path is a path such that all vertices are distinct, except that the first and last could be the same.

Cyclic and Acyclic Graphs

Cycle in a directed graph
A cycle in a directed graph is a path of length at least 1 such that $w_{1}=w_{N}$; the cycle is simple if the path is simple.

Cycle in an undirected graph
A cycle in an undirected graph is a path of length at least 1 such that $w_{1}=w_{N}$ and all edges are distinct.

Directed acyclic graph
A directed graph is acyclic if it has no cycles; it is called a DAG.

Connected Graphs

Connected undirected graph
An undirected graph is connected if there is a path from every vertex to every other vertex.

Strongly connected directed graph
A directed graph is strongly connected if there is a path from every vertex to every other vertex.

Weakly connected directed graph
A directed graph that is not strongly connected is called weakly connected if its undirected version is connected.

Adjacency Matrix

Adjacency matrix
A directed graph can be represented using a two-dimensional boolean array A by setting $A[u][v]$ to true if and only if $(u, v) \in E$.
A weighted directed graph can be represented using a two-dimensional array A whose type is the same as the weight type, by A by setting $A[u][v]$ to the weight of the corresponding edge, using an unambiguous default value if there is no edge.

Space requirement
The space requirement of an adjacency matrix is $\Theta\left(|V|^{2}\right)$. This works well if $|E|=\Theta\left(|V|^{2}\right)$. Such graphs are called dense.

Adjacency List

Sparse graphs
Graphs that are not dense are called sparse.
Example
Streets running east-west/north south.

Adjacency list
A directed graph can be represented using an array of lists, containing, for each vertex, all adjacent vertices.

Example Graph

Adjacency List

1	2, 4, 3
2	4,5
3	6
4	6, 7, 3
5	4,7
6	(empty)
7	6

2 Topological Sort

- The Problem
- A Simple Algorithm
- A Smarter Algorithm
(3) Shortest-Path Algorithms

The Problem

Topological sort
A topological sort is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_{i} to v_{j}, then v_{j} appears after v_{i} in the ordering.

Example: In what order to take modules?
Module prerequisites can be represented by edges in a directed graph

The Problem
A Simple Algorithm
A Smarter Algorithm

Example

A Simple Algorithm

Idea
Find any vertex with no incoming edges. Print the vertex, remove its edges, and find the next vertex with no incoming edges.

Indegree
The indegree of a vertex v is the number of edges of the form (u, v).

Implementation

```
void topsort( ) throws CycleFoundException
{
    for( int counter = 0; counter < NUM_VERTICES; counter++ )
    {
    Vertex v = findNewVertexOfIndegreeZero( );
    if( v == null )
        throw new CycleFoundException( );
    v.topNum = counter;
    for each Vertex w adjacent to v
    w.indegree--;
}
}
```


Runtime Analysis

Setup
Initially, we compute the indegree of each vertex.
Quadratic runtime
Each call of findNewVertexOfIndegreeZero requires $O(|V|)$ time. There are $|V|$ calls, thus overall $O\left(|V|^{2}\right)$.

A Smarter Algorithm

Observation
After each iteration, we visit every vertex; quite wasteful.

Idea
Learn from previous operations by keeping track of the indegrees and the vertices with indegree 0.

Implementation

```
void topsort( ) throws CycleFoundException
{
    Queue<Vertex> q = new Queue<Vertex>( );
    int counter = 0;
    for each Vertex v
        if( v.indegree == 0)
            q.enqueue( v );
    while( !q.isEmpty( ) )
    {
        Vertex v = q.dequeue( );
        v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
            q.enqueue( w );
    }
    if( counter != NUM_VERTICES )
        throw new CycleFoundException( );
}
```


Example

Example

	Indegree Before Dequeue \#							
Vertex	1	2	3	4	5	6	7	
v_{1}	0	0	0	0	0	0	0	
v_{2}	1	0	0	0	0	0	0	
v_{3}	2	1	1	1	0	0	0	
v_{4}	3	2	1	0	0	0	0	
v_{5}	1	1	0	0	0	0	0	
v_{6}	3	3	3	3	2	1	0	
v_{7}	2	2	2	1	0	0	0	
Enqueue	v_{1}	v_{2}	v_{5}	v_{4}	v_{3}, v_{7}		v_{6}	
Dequeue	v_{1}	v_{2}	v_{5}	v_{4}	v_{3}	v_{7}	v_{6}	

Definitions
(2) Topological Sort

3 Shortest-Path Algorithms

- The Problem and Some Variants
- Unweighted Shortest Paths
- Dijkstra's Algorithm

The Problem

Input
Weighted graph: associated with each edge $\left(v_{i}, v_{j}\right)$ is a cost $c_{i, j}$ to traverse the edge.

Weighted path length
Cost of path $v_{1} v_{2} \cdots v_{N}$ is $\sum_{i=1}^{N-1} c_{i, i+1}$.

Unweighted path length

Length of path $v_{1} v_{2} \cdots v_{N}$ is $N-1$.

Single-Source Shortest-Path Problem

Problem

Given as input a weighted graph, $G=(V, E)$, and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G.

Example

Shortest path from v_{1} to v_{6} has a cost of 6 and goes from v_{1} to v_{4} to v_{7} to v_{6}.

Negative Cost Cycles

path from v_{5} to v_{4} has cost 1
but a shorter path exists:
v_{5} to v_{4} to v_{2} to v_{5} to v_{4}
This is a negative cost cycle

The Problem and Some Variants Unweighted Shortest Paths
Dijkstra's Algorithm

Unweighted Shortest Paths: Example

Find the shortest path from v_{3} to all other vertices

Idea

Level-order traversal
Start with s (distance 0) and proceed in phases currDist, each time going through all vertices. If vertex is "known" and has distance currDist, set the distance of its neighbors to currDist+1.

Implementation

```
void unweighted( Vertex s )
{
    for each Vertex v
    {
        v.dist = INFINITY;
        v.known = false;
    }
    s.dist = 0;
    for( int currDist = 0; currDist < NUM_VERTICES; currDist++ )
        for each Vertex v
            if( !v.known && v.dist == currDist )
            {
            v.known = true;
            for each Vertex w adjacent to v
                if(w.dist == INFINITY )
                {
                        w.dist = currDist + 1;
                        w.path = v;
                }
        }
}
```


Inefficiency

Careless loop
In each phase, we go through all vertices. We can remember the "known" vertices in a data structure.

Suitable data structure
Queue: will contain the vertices in order of increasing distance

Implementation

```
void unweighted( Vertex s )
{
    Queue<Vertex> q = new Queue<Vertex>( );
    for each Vertex v
        v.dist = INFINITY;
    s.dist = 0;
    q.enqueue(s );
    while( !q.isEmpty( ) )
    {
        Vertex v = q.dequeue( );
        for each Vertex w adjacent to v
            if( w.dist == INFINITY )
            {
            w.dist = v.dist + 1;
            w.path = v;
            q.enqueue( w );
            }
    }
}
```


Dijkstra's Algorithm: Idea

Idea
Similar to level-order traversal; treat nodes in the order of shortest distance

Greedy algorithm
Dijkstra's algorithm is an example of a class of algorithms that exploit that a local property is at the same time a global property

Example

Example

Example

Example

After v_{4} is declared known:

v	known	d_{v}	p_{v}
v_{1}	T	0	0
v_{2}	F	2	v_{1}
v_{3}	F	3	v_{4}
v_{4}	T	1	v_{1}
v_{5}	F	3	v_{4}
v_{6}	F	9	v_{4}
v_{7}	F	5	v_{4}

Example

After v_{2} is declared known:

v	known	d_{v}	p_{v}
v_{1}	T	0	0
v_{2}	T	2	v_{1}
v_{3}	F	3	v_{4}
v_{4}	T	1	v_{1}
v_{5}	F	3	v_{4}
v_{6}	F	9	v_{4}
v_{7}	F	5	v_{4}

Example

After v_{5} and then v_{3} are declared known:

v	known	d_{v}	p_{v}
v_{1}	T	0	0
v_{2}	T	2	v_{1}
v_{3}	T	3	v_{4}
v_{4}	T	1	v_{1}
v_{5}	T	3	v_{4}
v_{6}	F	8	v_{3}
v_{7}	F	5	v_{4}

Example

After v_{7} is declared known:

v	known	d_{v}	p_{v}
v_{1}	T	0	0
v_{2}	T	2	v_{1}
v_{3}	T	3	v_{4}
v_{4}	T	1	v_{1}
v_{5}	T	3	v_{4}
v_{6}	F	6	v_{7}
v_{7}	T	5	v_{4}

Example

After v_{6} is declared known:

v	known	d_{v}	p_{v}
v_{1}	T	0	0
v_{2}	T	2	v_{1}
v_{3}	T	3	v_{4}
v_{4}	T	1	v_{1}
v_{5}	T	3	v_{4}
v_{6}	T	6	v_{7}
v_{7}	T	5	v_{4}

The Problem and Some Variants

Summary: Stages of Dijkstra's Algorithm

Data Structure for Vertices

```
class Vertex
{
    public List adj; // Adjacency list
    public boolean known;
    public DistType dist; // DistType is probably int
    public Vertex path;
    // Other fields and methods as needed
}
```


Pseudocode for Dijkstra's Algorithm

```
void dijkstra( Vertex s )
{
    for each Vertex v
    {
        v.dist = INFINITY;
        v.known = false;
    }
    s.dist = 0;
    for(; ; )
    {
        Vertex v = smallest unknown distance vertex;
        if( v == NOT_A_VERTEX )
            break;
        v.known = true;
        for each Vertex w adjacent to v
            if( !w.known )
                if( v.dist + cvw < w.dist)
                {
                        // Update w
                        decrease( w.dist to v.dist + cvw );
                        w.path = v;
            }
    }
}
```


Complexity

Naive implementation
Scan all vertices sequentially to find unknown vertex with minimum $d_{v}: O(|V|)$. Thus overall: $O\left(|V|^{2}\right)$

Priority queue for unknown vertices
Runtime can be reduced to $O(|E| \log |V|)$.

This Week

- Thursday tutorials: Midterm 2 and lab tasks 2
- Friday Lecture: Graph Algorithms II
- Minimum spanning tree
- Euler paths

