09 A: Graph Algorithms I

CS1102S: Data Structures and Algorithms

Martin Henz

March 17, 2010

Generated on Tuesday 16th March, 2010, 22:51

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

CS1102S: Data Structures and Algorithms 09 A: Graph Algorithms I

æ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Graphs Representation of Graphs

- Graphs
- Representation of Graphs

2 Topological Sort

3 Shortest-Path Algorithms

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Graphs Representation of Graphs

Graph, Vertices, Edges

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Ξ.

・ロン ・四 ・ ・ ヨン ・ ヨン ・

Graphs Representation of Graphs

Graph, Vertices, Edges

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Ξ.

Graphs Representation of Graphs

Graph, Vertices, Edges

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Directed graph

If the pairs are ordered, then the graph is *directed*.

크

・ロト ・回 ト ・ヨト ・ヨト

Graphs Representation of Graphs

Graph, Vertices, Edges

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Directed graph

If the pairs are ordered, then the graph is *directed*.

Weight

Sometimes the edges have a third component, knows as either a *weight* or a *cost*. Such graphs are called *weighted graphs*.

Graphs Representation of Graphs

Paths

Path

A *path* in a graph is a sequence of vertices $w_1, w_2, w_3, \ldots, w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i < N$. It is said to lead from w_1 ot w_N .

Ξ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Graphs Representation of Graphs

Paths

Path

A *path* in a graph is a sequence of vertices $w_1, w_2, w_3, \ldots, w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i < N$. It is said to lead from w_1 ot w_N .

Path length

The *length* of a path is the number of edges on the path, namely N - 1.

크

・ロン ・四 ・ ・ ヨン ・ ヨン ・

Graphs Representation of Graphs

Paths

Path

A *path* in a graph is a sequence of vertices $w_1, w_2, w_3, \ldots, w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i < N$. It is said to lead from w_1 ot w_N .

Path length

The *length* of a path is the number of edges on the path, namely N - 1.

Path with no edges

For any vertex v, a path with no edges always leads from v to v itself.

イロト イヨト イヨト イヨト

Graphs Representation of Graphs

Loops

Loop

An edge (v, v) from a vertex to itself is called a *loop*.

æ.

・ロン ・四 ・ ・ ヨン ・ ヨン ・

Graphs Representation of Graphs

Loops

Loop

An edge (v, v) from a vertex to itself is called a *loop*.

Usually no loops

The graphs we consider here do not have loops.

Ξ.

・ロン ・四 ・ ・ ヨン ・ ヨン ・

Graphs Representation of Graphs

Loops

Loop

An edge (v, v) from a vertex to itself is called a *loop*.

Usually no loops

The graphs we consider here do not have loops.

Simple path

A *simple path* is a path such that all vertices are distinct, except that the first and last could be the same.

크

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Graphs Representation of Graphs

Cyclic and Acyclic Graphs

Cycle in a directed graph

A *cycle* in a directed graph is a path of length at least 1 such that $w_1 = w_N$; the cycle is *simple* if the path is simple.

・ロト ・四ト ・ヨト ・ヨト

Graphs Representation of Graphs

Cyclic and Acyclic Graphs

Cycle in a directed graph

A *cycle* in a directed graph is a path of length at least 1 such that $w_1 = w_N$; the cycle is *simple* if the path is simple.

Cycle in an undirected graph

A *cycle* in an undirected graph is a path of length at least 1 such that $w_1 = w_N$ and all edges are distinct.

Graphs Representation of Graphs

Cyclic and Acyclic Graphs

Cycle in a directed graph

A *cycle* in a directed graph is a path of length at least 1 such that $w_1 = w_N$; the cycle is *simple* if the path is simple.

Cycle in an undirected graph

A *cycle* in an undirected graph is a path of length at least 1 such that $w_1 = w_N$ and all edges are distinct.

Directed acyclic graph

A directed graph is acyclic if it has no cycles; it is called a DAG.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Graphs Representation of Graphs

Connected Graphs

Connected undirected graph

An undirected graph is *connected* if there is a path from every vertex to every other vertex.

크

・ロ・・ (日・・ (日・・ (日・)

Graphs Representation of Graphs

Connected Graphs

Connected undirected graph

An undirected graph is *connected* if there is a path from every vertex to every other vertex.

Strongly connected directed graph

A directed graph is *strongly connected* if there is a path from every vertex to every other vertex.

< ロ > < 団 > < 団 > < 団 > < 団 > -

Graphs Representation of Graphs

Connected Graphs

Connected undirected graph

An undirected graph is *connected* if there is a path from every vertex to every other vertex.

Strongly connected directed graph

A directed graph is *strongly connected* if there is a path from every vertex to every other vertex.

Weakly connected directed graph

A directed graph that is not strongly connected is called *weakly connected* if its undirected version is connected.

< ロ > < 回 > < 回 > < 回 > 、

Graphs Representation of Graphs

Adjacency Matrix

Adjacency matrix

A directed graph can be represented using a two-dimensional boolean array *A* by setting A[u][v] to true if and only if $(u, v) \in E$.

크

< ロ > < 団 > < 団 > < 団 > < 団 > -

Graphs Representation of Graphs

Adjacency Matrix

Adjacency matrix

A directed graph can be represented using a two-dimensional boolean array *A* by setting A[u][v] to true if and only if $(u, v) \in E$. A weighted directed graph can be represented using a two-dimensional array *A* whose type is the same as the weight type, by *A* by setting A[u][v] to the weight of the corresponding edge, using an unambiguous default value if there is no edge.

< ロ > < 団 > < 団 > < 団 > < 団 > -

Graphs Representation of Graphs

Adjacency Matrix

Adjacency matrix

A directed graph can be represented using a two-dimensional boolean array *A* by setting A[u][v] to true if and only if $(u, v) \in E$. A weighted directed graph can be represented using a two-dimensional array *A* whose type is the same as the weight type, by *A* by setting A[u][v] to the weight of the corresponding edge, using an unambiguous default value if there is no edge.

Space requirement

The space requirement of an adjacency matrix is $\Theta(|V|^2)$. This works well if $|E| = \Theta(|V|^2)$. Such graphs are called *dense*.

Graphs Representation of Graphs

Adjacency List

Sparse graphs

Graphs that are not dense are called sparse.

Ξ.

・ロト ・四ト ・ヨト ・ヨト

Graphs Representation of Graphs

Adjacency List

Sparse graphs

Graphs that are not dense are called sparse.

Example

Streets running east-west/north south.

크

・ロト ・四ト ・ヨト ・ヨト

Graphs Representation of Graphs

Adjacency List

Sparse graphs

Graphs that are not dense are called sparse.

Example

Streets running east-west/north south.

Adjacency list

A directed graph can be represented using an array of lists, containing, for each vertex, all adjacent vertices.

크

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Graphs Representation of Graphs

Example Graph

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Graphs Representation of Graphs

Adjacency List

1	2, 4, 3	
2	4, 5	
3	6	
4	6, 7, 3	
5	4, 7	
6	(empty)	
7	6	< □ >

臣

▲□→ ▲ □→ ▲ □→ -

Definitions	The Problem
Topological Sort	A Simple Algorithm
Shortest-Path Algorithms	A Smarter Algorithm

- **Topological Sort**
- The Problem
- A Simple Algorithm
- A Smarter Algorithm

3 Shortest-Path Algorithms

크

(日)

The Problem A Simple Algorithm A Smarter Algorithm

The Problem

Topological sort

A *topological sort* is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_j appears *after* v_i in the ordering.

(日)

The Problem

The Problem A Simple Algorithm A Smarter Algorithm

Topological sort

A *topological sort* is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_j appears *after* v_i in the ordering.

Example: In what order to take modules?

Module prerequisites can be represented by edges in a directed graph

< ロ > < 回 > < 回 > < 回 > 、

The Problem A Simple Algorithm A Smarter Algorithm

Example

CS1102S: Data Structures and Algorithms 09 A: Graph Algorithms I

æ.

The Problem A Simple Algorithm A Smarter Algorithm

A Simple Algorithm

Idea

Find any vertex with no incoming edges. Print the vertex, remove its edges, and find the next vertex with no incoming edges.

(日)

The Problem A Simple Algorithm A Smarter Algorithm

A Simple Algorithm

Idea

Find any vertex with no incoming edges. Print the vertex, remove its edges, and find the next vertex with no incoming edges.

Indegree

The *indegree* of a vertex v is the number of edges of the form (u, v).

・ロ・・ 日・ ・ 日・ ・ 日・

```
Definitions
Topological Sort
Shortest-Path Algorithms
```

The Problem A Simple Algorithm A Smarter Algorithm

Implementation

```
void topsort( ) throws CycleFoundException
```

```
for( int counter = 0; counter < NUM_VERTICES; counter++ )
{
    Vertex v = findNewVertexOfIndegreeZero( );
    if( v == null )
        throw new CycleFoundException( );
    v.topNum = counter;
    for each Vertex w adjacent to v
        w.indegree--;</pre>
```

크

< ロ > < 団 > < 団 > < 団 > < 団 > -

The Problem A Simple Algorithm A Smarter Algorithm

Runtime Analysis

Setup

Initially, we compute the indegree of each vertex.

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The Problem A Simple Algorithm A Smarter Algorithm

Runtime Analysis

Setup

Initially, we compute the indegree of each vertex.

Quadratic runtime

Each call of findNewVertexOfIndegreeZero requires O(|V|) time. There are |V| calls, thus overall $O(|V|^2)$.

크

・ロン ・四 ・ ・ ヨン ・ ヨン ・
The Problem A Simple Algorithm A Smarter Algorithm

A Smarter Algorithm

Observation

After each iteration, we visit every vertex; quite wasteful.

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The Problem A Simple Algorithm A Smarter Algorithm

A Smarter Algorithm

Observation

After each iteration, we visit every vertex; quite wasteful.

Idea

Learn from previous operations by keeping track of the indegrees and the vertices with indegree 0.

・ロ・・ 日・ ・ 日・ ・ 日・

```
        Definitions
        The Problem

        Topological Sort
        A Simple Algorithm

        Shortest-Path Algorithms
        A Smarter Algorithm
```

Implementation

```
void topsort() throws CycleFoundException
   Queue<Vertex> q = new Queue<Vertex>( );
   int counter = 0;
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );
   while( !q.isEmpty( ) )
       Vertex v = q.dequeue( );
       v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
                q.enqueue( w );
    }
    if( counter != NUM VERTICES )
        throw new CycleFoundException();
```

・ロン ・四 ・ ・ ヨン ・ ヨン ・

Definitions The Problem Topological Sort A Simple Algorithm Shortest-Path Algorithms A Smarter Algorithm

Example

æ.

Definitions	The Problem
Topological Sort	A Simple Algorithm
Shortest-Path Algorithms	A Smarter Algorithm

Indegree Before Dequeue #								
Vertex	1	2	3	4	5	6	7	
v ₁	0	0	0	0	0	0	0	
v ₂	1	0	0	0	0	0	0	
v ₃	2	1	1	1	0	0	0	
ν ₄	3	2	1	0	0	0	0	
ν ₅	1	1	0	0	0	0	0	
v ₆	3	3	3	3	2	1	0	
ν ₇	2	2	2	1	0	0	0	
Enqueue	v_1	v_2	v_5	v_4	v_3, v_7		v_6	
Dequeue	v_1	v_2	v_5	v_4	v ₃	v_7	v ₆	

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

1 Definitions

2 Topological Sort

Shortest-Path Algorithms

- The Problem and Some Variants
- Unweighted Shortest Paths
- Dijkstra's Algorithm

크

・ロ・・ 日・ ・ 日・ ・ 日・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

The Problem

Input

Weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge.

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

The Problem

Input

Weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge.

Weighted path length

Cost of path $v_1 v_2 \cdots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.

Ξ.

ヘロン ヘヨン ヘヨン ヘヨン

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

The Problem

Input

Weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge.

Weighted path length

Cost of path
$$v_1 v_2 \cdots v_N$$
 is $\sum_{i=1}^{N-1} c_{i,i+1}$.

Unweighted path length

Length of path $v_1 v_2 \cdots v_N$ is N - 1.

크

ヘロン ヘロン ヘビン ヘビン

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Single-Source Shortest-Path Problem

Problem

Given as input a weighted graph, G = (V, E), and a distinguished vertex, *s*, find the shortest weighted path from *s* to every other vertex in *G*.

크

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Example

<<p>(ロ)

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Example

Shortest path from v_1 to v_6

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Example

Shortest path from v_1 to v_6 has a cost of 6 and goes from v_1 to v_4 to v_7 to v_6 .

æ.

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Negative Cost Cycles

æ.

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Negative Cost Cycles

path from v_5 to v_4 has cost 1

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Negative Cost Cycles

path from v_5 to v_4 has cost 1 but a shorter path exists:

æ.

イロト イヨト イヨト イヨト

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Negative Cost Cycles

path from v_5 to v_4 has cost 1 but a shorter path exists: v_5 to v_4 to v_2 to v_5 to v_4

æ.

・ロン ・四 ・ ・ ヨン ・ ヨン ・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Negative Cost Cycles

path from v_5 to v_4 has cost 1 but a shorter path exists: v_5 to v_4 to v_2 to v_5 to v_4 This is a *negative cost cycle*

臣

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Unweighted Shortest Paths: Example

Find the shortest path from v_3 to all other vertices

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Idea

Level-order traversal

Start with *s* (distance 0) and proceed in phases currDist, each time going through all vertices. If vertex is "known" and has distance currDist, set the distance of its neighbors to currDist+1.

크

・ロン ・四 ・ ・ ヨ ・ ・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Implementation

```
void unweighted( Vertex s )
    for each Vertex v
        v.dist = INFINITY;
        v.known = false:
    s.dist = 0:
    for( int currDist = 0; currDist < NUM VERTICES; currDist++ )</pre>
        for each Vertex v
            if( !v.known && v.dist == currDist )
                v.known = true;
                for each Vertex w adjacent to v
                    if( w.dist == INFINITY )
                        w.dist = currDist + 1:
                        w.path = v;
                     }
```

Inefficiency

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Careless loop

In each phase, we go through all vertices. We can remember the "known" vertices in a data structure.

크

・ロ・・ 日・ ・ 日・ ・ 日・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Inefficiency

Careless loop

In each phase, we go through all vertices. We can remember the "known" vertices in a data structure.

Suitable data structure

Queue: will contain the vertices in order of increasing distance

・ロ・・ 日・ ・ 日・ ・ 日・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Implementation

```
void unweighted( Vertex s )
   Oueue<Vertex> g = new Oueue<Vertex>( );
    for each Vertex v
        v.dist = INFINITY;
   s.dist = 0;
   q.enqueue( s );
    while( !q.isEmpty( ) )
       Vertex v = q.dequeue();
        for each Vertex w adjacent to v
            if( w.dist == INFINITY )
                w.dist = v.dist + 1:
                w.path = v;
                a.enqueue( w );
```

・ロト ・回 ト ・ヨト ・ヨト

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Dijkstra's Algorithm: Idea

Idea

Similar to level-order traversal; treat nodes in the order of shortest distance

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Dijkstra's Algorithm: Idea

Idea

Similar to level-order traversal; treat nodes in the order of shortest distance

Greedy algorithm

Dijkstra's algorithm is an example of a class of algorithms that exploit that a local property is at the same time a global property

・ロ・・ 日・ ・ 日・ ・ 日・

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

Definitions The Problem and Some Variants Topological Sort Unweighted Shortest Path Shortest-Path Algorithms Dijkstra's Algorithm

Example

Initial configuration:				
ν	known	d_v	pv	
v ₁	F	0	0	
v ₂	F	∞	0	
v ₃	F	∞	0	
v ₄	F	∞	0	
v ₅	F	∞	0	
v ₆	F	∞	0	
v7	F	∞	0	

・ロン ・四 ・ ・ ヨン ・ ヨン ・

æ.

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

After	<i>V</i> ₁	is	decla	ared
<u>know</u>	'n:			
ν	knowi	1	d_v	p_{ν}
v ₁	Т		0	0
v ₂	F		2	v_1
v ₃	F		∞	0
v ₄	F		1	v_1
v_5	F		∞	0
v ₆	F		∞	0
ν ₇	F		∞	0

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

After	v_4 is	decla	ared
KHOV	V(1.		
ν	known	d_v	pν
v_1	Т	0	0
v ₂	F	2	v_1
v ₃	F	3	v_4
ν ₄	Т	1	v_1
v_5	F	3	v_4
v ₆	F	9	v4
v ₇	F	5	v ₄

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

After	v ₂ is	decla	ared
know	'n:		
ν	known	d_v	pν
v ₁	Т	0	0
v ₂	Т	2	v_1
v ₃	F	3	v ₄
v ₄	Т	1	v_1
v_5	F	3	v4
v ₆	F	9	v4
v ₇	F	5	v ₄

Definitions The Problem and Some Variants Topological Sort Unweighted Shortest Path Shortest-Path Algorithms Dijkstra's Algorithm

Example

After v_5 and then v_3 are declared known:				
ν	known	d_{v}	p _v	
v1	Т	0	0	
v ₂	Т	2	v_1	
v ₃	Т	3	v ₄	
v ₄	Т	1	v_1	
ν ₅	Т	3	v ₄	
v ₆	F	8	v ₃	
v ₇	F	5	v_4	

・ロン ・四 ・ ・ ヨン ・ ヨン ・

æ.

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

After knowi	<i>v</i> 7 is n:	decla	ared
ν	known	d _v	pν
v ₁	Т	0	0
v ₂	Т	2	v_1
v ₃	Т	3	v_4
v ₄	Т	1	v_1
v ₅	Т	3	v_4
v ₆	F	6	v ₇
v ₇	Т	5	v_4

< □ > < @ > < 注 > < 注 > □ = :

Definitions	The Problem and Some Variants
Topological Sort	Unweighted Shortest Paths
Shortest-Path Algorithms	Dijkstra's Algorithm

After <i>v</i> ₆ is declared known:					
ν	known	d _v	p _v		
v ₁	Т	0	0		
v ₂	Т	2	v1		
v ₃	Т	3	v4		
v ₄	Т	1	v1		
v ₅	Т	3	v4		
v ₆	Т	6	v7		
v ₇	Т	5	v ₄		

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Summary: Stages of Dijkstra's Algorithm

2

臣

(日)

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Data Structure for Vertices

```
class Vertex
{
    public List adj; // Adjacency list
    public boolean known;
    public DistType dist; // DistType is probably int
    public Vertex path;
        // Other fields and methods as needed
}
```

Ξ.

・ロト ・四ト ・ヨト ・ヨト
The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Pseudocode for Dijkstra's Algorithm

```
void dijkstra( Vertex s )
 for each Vertex v
    v.dist = INFINITY;
    v.known = false;
s.dist = 0;
 for(;;)
    Vertex v = smallest unknown distance vertex:
    if( v == NOT A VERTEX )
        break;
    v.known = true:
    for each Vertex w adjacent to v
        if( !w.known )
             if( v.dist + cvw < w.dist )
                 // Update w
                 decrease( w.dist to v.dist + cvw );
                 w.path = v;
```

Ξ.

・ロン ・四 ・ ・ ヨン ・ ヨン ・

The Problem and Some Variants **Unweighted Shortest Paths Dijkstra's Algorithm**

Complexity

Naive implementation

Scan all vertices sequentially to find unknown vertex with minimum d_V : O(|V|). Thus overall: $O(|V|^2)$

크

・ロ・・ 日・ ・ 日・ ・ 日・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

Complexity

Naive implementation

Scan all vertices sequentially to find unknown vertex with minimum d_v : O(|V|). Thus overall: $O(|V|^2)$

Priority queue for unknown vertices

Runtime can be reduced to $O(|E|\log|V|)$.

크

・ロン・(型)・ (目)・ (目)・

The Problem and Some Variants Unweighted Shortest Paths Dijkstra's Algorithm

This Week

- Thursday tutorials: Midterm 2 and lab tasks 2
- Friday Lecture: Graph Algorithms II
 - Minimum spanning tree
 - Euler paths

크

・ロト ・四ト ・ヨト ・ヨト