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Examples

Finding the smallest element in a linked list: O(N)

Inserting an element into a heap: O(log N)

Sorting an array of items using comparisons: O(N log N)

Printing all sequences of N binary digits: O(2N)
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Algorithmic Problems

Given Input

Clear description of input data

Required Output

Description of what a solution constitutes

Algorithmic Solution

Description of a process how to arrive at the required output,
given any legal input
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Questions

Are all algorithmic problems solvable?

Are all algorithmic problems solvable in polynomial time?
Is there a k such that there is an O(Nk ) algorithm for the
problem?
Clearly no! The output can have exponential size!

If we do not have a polynomial algorithm, can we always
prove that there is none?
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Halting Problem

Definition (Halting Problem)

Given a description of a program and a finite input, decide
whether the program finishes running or will run forever, given
that input.
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Undecidability of the Halting Problem

Theorem (Undecidability of the Halting Problem)

The Halting Problem is undecidable; there cannot exist a
program that returns true, if and only if a given function f
terminates when applied to a given value x.
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Proof of the Undecidability of the Halting Problem

Assume that there is a Java function halts that when applied
to a representation f’ of a Java function f, and a Java object x
returns true if f(x) terminates, and false if f(x) does not
terminate. Such a function halts exists if and only if the
Halting Problem is decidable.
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Proof of the Undecidability of the Halting Problem

With the assumption of the existence of halts, let us construct
a Java function strange as follows:

boolean strange(w’) {
if (halts(w’,w’)

while (true);
return true;

}

Such a function strange can surely be written, if halts exists.
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Proof of the Undecidability of the Halting Problem

boolean strange(w’) {
if (halts(w’,w’)

while (true);
return 0;

}

What will strange(strange’) return?
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Proof of the Undecidability of the Halting Problem

Conclusion: strange cannot exist, and therefore halt cannot
exist.

The Halting Problem is undecidable.
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Example: Hamiltonian Cycles

Given Input

An undirected connected graph

Desired Output

A path that starts and ends in the same vertex and contains all
other vertices exactly once.

No efficient algorithm known

We do not know if there is a k such that the problem can be
solved in O(Nk ).
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Our Last Question

Question

If we do not have a polynomial algorithm, can we always prove
that there is none?

Answer

No: we cannot (at this moment) prove that there is no
polynomial algorithm for the Hamiltonian cycle problem
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Verifying Solutions

Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can
easily check that it is correct.
Simply check that the last vertex in the cycle is that same as the
first, and that every vertex of the graph is contained in the cycle.

Definition

We call the class of problems for which solution candidates can
be checked in polynomial time NP.
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NP-Complete Problems

Other problems in NP

Boolean satisfiability problem (SAT)

Graph coloring problem

Clique problem

Reducibility

It turns out that all the mentioned problems can be transformed
into each other in polynomial time! Thus if we can solve one,
we can solve all.

NP-Complete Problems

The class of problems that can be transformed into the
Hamiltonian path problem in polynomial time is called the class
of NP-complete problems.
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Nonpreemptive Scheduling

Input

A set of jobs with a running time for each

Desired output

A sequence for the jobs to execute on on single machine,
minimizing the average completion time
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Example

Some schedule:

The optimal schedule:

CS1102S: Data Structures and Algorithms 10 A: How Difficult Can Problems Be? 19



Problem Difficulty
Greedy Algorithms

The Optimal Solution

Theorem

Ordering the jobs in increasing length leads to a schedule with
minimal average completion time.

Proof

C =
N∑

k=1

(N − k + 1)tik

= (N + 1)
N∑

k=1

tik −
N∑

k=1

k · tik

If x > y such that tix < tiy , then by swapping x and y the second
sum increases, thus the overall cost decreases.
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The Multiprocessor Case

N processors

Now we can run the jobs on N identical machines. What is a
schedule that minimizes the average completion time?
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A “Slight” Variant

Miniming final completion time

If we want to minimize the final completion time (completion
time of the last task), the problem becomes NP-complete!
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