11 A: Algorithm Design Techniques

CS1102S: Data Structures and Algorithms

Martin Henz

March 31, 2010

Generated on Tuesday 6th April, 2010, 14:22

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques

- NP-Complete Problems
- Greedy Algorithms
- 3 Divide and Conquer
- 4 Dynamic Programming

Example: Hamiltonian Cycles

Given Input An undirected connected graph

Desired Output

A path that starts and ends in the same vertex and contains all other vertices exactly once.

No efficient algorithm known

We do not know if there is a *k* such that the problem can be solved in $O(N^k)$.

Our Last Question

Question

If we do not have a polynomial algorithm, can we always prove that there is none?

Answer

No: we cannot (at this moment) prove that there is no polynomial algorithm for the Hamiltonian cycle problem

Verifying Solutions

Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can easily check that it is correct.

Simply check that the last vertex in the cycle is that same as the first, and that every vertex of the graph is contained in the cycle.

Definition

We call the class of problems for which solution candidates can be checked in polynomial time *NP*.

NP-Complete Problems

Other problems in NP

- Boolean satisfiability problem (SAT)
- Graph coloring problem
- Clique problem

Reducibility

All these problems can be transformed into each other in polynomial time! Thus if we can solve one, we can solve all.

NP-Complete Problems

The class of problems that can be transformed into the Hamiltonian path problem in polynomial time is called the class of *NP-complete problems*.

Scheduling Huffman Codes

- 2
- Greedy Algorithms
- Scheduling
- Huffman Codes

Divide and Conquer

Dynamic Programming

Scheduling Huffman Codes

Nonpreemptive Scheduling

Input

A set of jobs with a running time for each

Desired output

A sequence for the jobs to execute on on single machine, minimizing the average completion time
 Scheduling

 Divide and Conquer
 Huffman Codes

 Dynamic Programming
 Huffman Codes

Example

Job	Time
j_1	15
j ₂	8
j ₃	3
j_4	10

Some schedule:

	j ₁		j2		j3		j 4	
0		15		2	3 2	6		36
The o	ptimal sc	hedule:						
j ₃	j ₂	j4				j 1		
0 3	1	1	2	21				36

11 A: Algorithm Design Techniques

Scheduling Huffman Codes

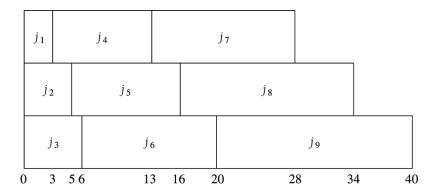
The Multiprocessor Case

N processors

Now we can run the jobs on *N* identical machines. What is a schedule that minimizes the average completion time?

Scheduling Huffman Codes

Example



Scheduling Huffman Codes

A "Slight" Variant

Miniming final completion time

If we want to minimize the *final* completion time (completion time of the last task), the problem becomes NP-complete!

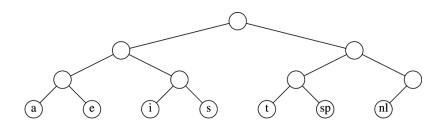
Scheduling Huffman Codes

Standard Coding Scheme

Character	Code	Frequency	Total Bits	
а	000	10	30	
е	001	15	45	
i	010	12	36	
S	011	3	9	
t	100	4	12	
space	101	13	39	
newline	110	1	3	
Total			174	

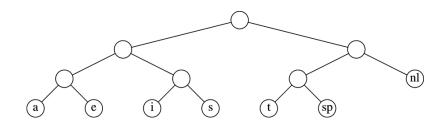
Scheduling Huffman Codes

Representation in a Tree



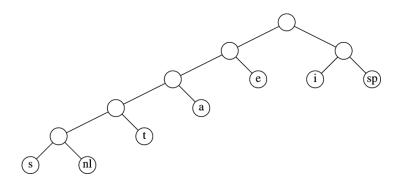
Scheduling Huffman Codes

A Slightly Better Representation



Scheduling Huffman Codes

Optimal Prefix Code in Tree Form



Scheduling Huffman Codes

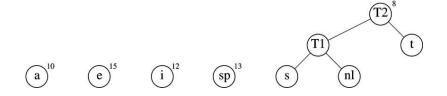
Optimal Prefix Code in Table Form

Character	Code	Frequency	Total Bits	
а	001	10	30	
е	01	15	30	
i	10	12	24	
S	00000	3	15	
t	0001	4	16	
space	11	13	26	
newline	00001	1	5	
Total			146	

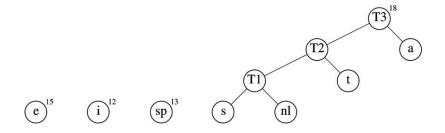
Scheduling Huffman Codes

Scheduling Huffman Codes

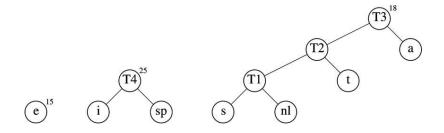
Scheduling Huffman Codes



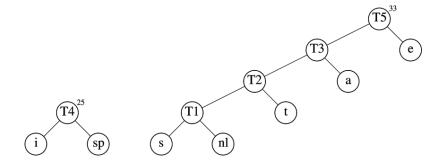
Scheduling Huffman Codes



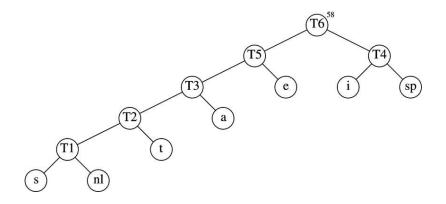
Scheduling Huffman Codes



Scheduling Huffman Codes



Scheduling Huffman Codes



Sorting Running Time Closest-Points Problem

Greedy Algorithms

- 3 Divide and Conquer
 - Sorting
 - Running Time
 - Closest-Points Problem

Sorting Running Time Closest-Points Problem

Sorting using Divide and Conquer

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge (linear)

Idea of Quicksort Split array in two, using pivot (linear); sort the two (recursively); merge (trivial)

Sorting Running Time Closest-Points Problem

Running Time of Divide and Conquer Algorithms

Merge Sort: T(N) = 2T(N/2) + O(N)

 $O(N \log N)$

Generalization: $T(N) = aT(N/b) + \Theta(N^k)$

$$T(N) = O(N^{\log_b a}) \quad \text{if } a > b^k$$

$$T(N) = O(N^k \log N) \quad \text{if } a = b^k$$

$$T(N) = O(N^k) \quad \text{if } a < b^k$$

Sorting Running Time Closest-Points Problem

Closest-Points Problem

Input

Set of points in a plane

Euclidean distance between p_1 and p_2

$$[(x_1 - x_2)^2 + (y_1 - y_2)^2]^{1/2}$$

Required output Find the closest pair of points

Example

	0				0				
			0	0					
	0	0							
						0			
			o	c	•				
							0		
	0			0					
		o				o			
	0			c)				
CS1102S: Data Structures and Algorithms			ms 11 A	: Algorithm [Design Techn	ques	2	9	

Sorting Running Time Closest-Points Problem

Naive Algorithm

Exhaustive search

Compute the distance between each two points and keep the smallest

Run time

There are N^2 pairs to check, thus $O(N^2)$

Sorting Running Time Closest-Points Problem

Idea

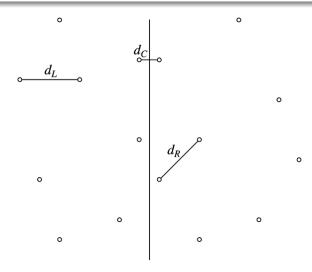
Preparation Sort points by x coordinate; $O(N \log N)$

Divide and Conquer

Split point set into two halves, P_L and P_R . Recursively find the smallest distance in each half. Find the smallest distance of pairs that *cross* the separation line.

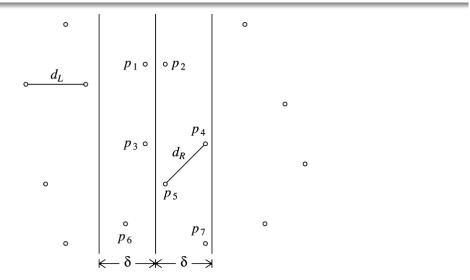
Sorting Running Time Closest-Points Problem

Partitioning with Shortest Distances Shown



Sorting Running Time Closest-Points Problem

Two-lane Strip



Sorting Running Time Closest-Points Problem

Brute Force Calculation of $min(\delta, d_C)$

```
// Points are all in the strip

for( i = 0; i < numPointsInStrip; i++ )

for( j = i + 1; j < numPointsInStrip; j++ )

if( dist(p_i, p_j) < \delta )

\delta = dist(p_i, p_j);
```

Sorting Running Time Closest-Points Problem

Better Idea

Sort points by y coordinate This allows a *scan* of the strip.

Sort points by y coordinate This allows a *scan* of the strip.

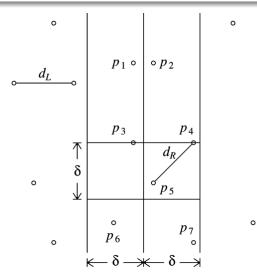
CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques

Sorting Running Time Closest-Points Problem

0

ο

Only p_4 and p_5 Need To Be Considered



Sorting Running Time Closest-Points Problem

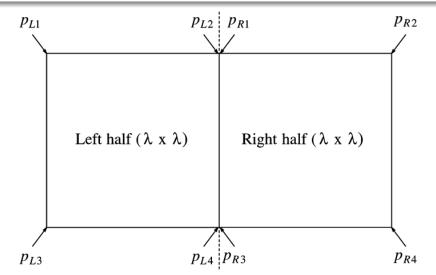
Refined Calculation of $min(\delta, d_C)$

// Points are all in the strip and sorted by y-coordinate

```
for( i = 0; i < numPointsInStrip; i++ )
for( j = i + 1; j < numPointsInStrip; j++ )
if( p_i and p_j's y-coordinates differ by more than \delta )
break; // Go to next p_i.
else
if( dist(p_i, p_j) < \delta )
\delta = dist(p_i, p_i);
```

Sorting Running Time Closest-Points Problem

At Most Eight Points Fit in Rectangle



Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Greedy Algorithms

Divide and Conquer

Dynamic Programming

- Fibonacci Numbers
- Optimal Binary Search Tree
- All-pairs Shortest Path

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Inefficient Algorithm

```
public static int fib(int n) {
    if (n <= 1)
        return 1;
    else
        return fib(n - 1) + fib(n - 2);
}</pre>
```

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Trace of Recursion



Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Memoization

```
int[] fibs = new int[100];
public static int fib(int n) {
    if (fibs[n]!=0) return fibs[n];
    if (n <= 1) return 1;
    int new_fib = fib(n - 1) + fib(n - 2);
    fibs[n] = new_fib;
    return new_fib;
}</pre>
```

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

A Simple Loop for Fibonacci Numbers

```
public static int fib(int n) {
    if (n <= 1) return 1;
    int last = 1, nextToLast = 1; answer = 1;
    for (int i = 2; i <= n; i++) {
        answer = last + nextToLast;
        nextToLast = last;
        last = answer;
    }
    return answer;
}</pre>
```

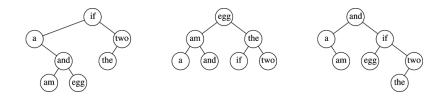
Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Sample Input

Word	Probability						
a	0.22						
am	0.18						
and	0.20						
egg	0.05						
if	0.25						
the	0.02						
two	0.08						

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Three Possible Binary Search Trees



Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Comparison of the Three Trees

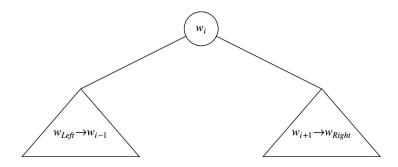
Input		T	ree #1	Ti	ree #2	Tree #3			
Word w _i	Probability <i>p</i> i	Acc Once	ess Cost Sequence	Acc Once	ess Cost Sequence	Access Cost Once Sequence			
a	0.22	2	0.44	3	0.66	2	0.44		
am	0.18	4	0.72	2	0.36	3	0.54		
and	0.20	3	0.60	3	0.60	1	0.20		
egg	0.05	4	0.20	1	0.05	3	0.15		
if	0.25	1	0.25	3	0.75	2	0.50		
the	0.02	3	0.06	2	0.04	4	0.08		
two	0.08	2	0.16	3 0.24		3	0.24		
Totals	1.00		2.43		2.70		2.15		

CS1102S: Data Structures and Algorithms

11 A: Algorithm Design Techniques

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Structure of Optimal Binary Search Tree



Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Proceed in order of growing tree size

For each range of words, compute optimal tree

Memoization For each range, store optimal tree for later retrieval

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Computation of Optimal Binary Search Tree

	Left=1		Left=2 Left		t=3	Left=4		Left=5		Left=6		Left=7		
Iteration=1	aa		amam		andand		eggegg		ifif		thethe		twotwo	
	.22	а	.18	am	.20	and	.05	egg	.25	if	.02	the	.08	two
Iteration=2	aam		amand		andegg		eggif		ifthe		thetwo			
	.58	а	.56	and	.30	and	.35	if	.29	if	.12	two		
Iteration=3	aand		amegg andif		eggthe		iftwo							
	1.02	am	.66	and	.80	if	.39	if	.47	if]			
Iteration=4	aegg		amif		andthe		eggtwo							
Iteration=4	1.17	am	1.21	and	.84	if	.57	if						
Iteration=5	aif		am.	.the	and.	.two								
	1.83	and	1.27	and	1.02	if								
Iteration=6	athe		am.	two										
	1.89	and	1.53	and										
Iteration=7	atwo													
	2.15	and												

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Run Time

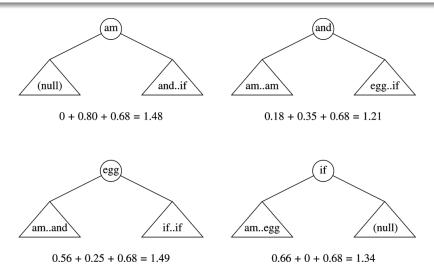
For each cell of table Consider all possible roots

Overall runtime

 $O(N^3)$

Fibonacci Numbers Optimal Binary Search Tree All-pairs Shortest Path

Example



CS1102S: Data Structures and Algorithms

11 A: Algorithm Design Techniques