
External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

13 A: External Algorithms II; Disjoint Sets;
Java API Support

CS1102S: Data Structures and Algorithms

Martin Henz

April 15, 2009

Generated on Friday 17th April, 2009, 12:37CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support1

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

1 External Sorting

2 Disjoint Sets

3 Java API Support for Data Structures

4 Puzzlers

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support2

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Model for External Sorting
The Simple Algorithm
Multiway Merge

1 External Sorting
Model for External Sorting
The Simple Algorithm
Multiway Merge

2 Disjoint Sets

3 Java API Support for Data Structures

4 Puzzlers

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support3

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Model for External Sorting
The Simple Algorithm
Multiway Merge

Tapes as Storage

Similar to disks

Access time many orders of magnitude slower than main
memory

Additional characteristics

Large amounts of data can be read sequentially quite efficiently

Access of previous locations

is extremely slow, as it requires re-winding the tape!

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support4

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Model for External Sorting
The Simple Algorithm
Multiway Merge

External Sorting

Main idea

Use tapes sequentially, and read one block from each input
tape tape

Merge blocks

Sort the blocks
Use merge procedure from mergesort to merge

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support5

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Model for External Sorting
The Simple Algorithm
Multiway Merge

The Simple Algorithm: Overview

Four tapes

Two input tapes; two output tapes

Read and write runs

Read runs from input tape, sort them and write alternatively to
output tapes

Continue, writing larger runs

Read two runs from each “output” tape, and merge them on the
fly, writing alternatively to “input” tapes

Continue

until one tape has all sorted data
CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support6

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Model for External Sorting
The Simple Algorithm
Multiway Merge

Multiway Merge

Why only four tapes?

If we have more than four tapes, we can take advantage of
them by using multiway merge

How finding the smallest element during merge?

Priority queue!

Each iteration of inner loop

deleteMin to find smallest element
insert new element from tape from which element was deleted

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support7

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Model for External Sorting
The Simple Algorithm
Multiway Merge

Polyphase Merge and Replacement Selection

Polyphase merge: main idea

Make use of fewer tapes, by re-using tapes for reading and
writing
Leading to tape organization using k th order Fibonacci
numbers

Replacement selection: main idea

Make use of input tape as output tape, reusing the tapes “on
the fly”

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support8

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

1 External Sorting

2 Disjoint Sets
Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants
Applications

3 Java API Support for Data Structures

4 Puzzlers

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support9

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Equivalence Relations

Definition

An equivalence relation is a relation R that satisfies three
properties:

1 (Reflexive) aRa, for all a ∈ S.
2 (Symmetric) aRb if and only if bRa.
3 (Transitive) aRb and bRc implies aRc.

Examples

Electrical connectivity (metal wires between points)

Cities belonging to same country

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support10

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

The Dynamic Equivalence Problem

Initial setup

Collection of N disjoint sets, each with one element

Operations

find(a): return the set of which x is element

union(a, b): merge the sets to which a and b belong, so
that find(a) = find(b)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support11

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Strategies

Fast Find, Slow Union

Use array repres to store equivalence class for each element

find(a): return repres[a]

union(a, b): if repres[x] = repres[b] then set repres[x] to
repres[a]

Fast Union, Reasonable Find

Union/find data structure

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support12

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Basic Data Structure

Idea

Maintain forest corresponding to equivalence relation

Union

Merge trees

Find

Return root of tree

Observe

Only upward direction needed!

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support13

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Example

Initial setup:

After union(4, 5)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support14

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Example

After union(4, 5)

After union(6, 7)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support15

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Example

After union(6, 7)

After union(4, 6)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support16

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Representation

Idea

Remember parent node only; mark root with −1

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support17

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Variants

Problem

How to choose root for union? Bad choice can lead to long
paths

Union-by-size

Always make the smaller tree a subtree of the larger tree

Analysis

When depth increases, the tree is smaller than the other side.
Thus, after union, it is at least twice as large.

Height

less than or equal to log N
CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support18

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Variants

Union-by-height

Always make the shorter tree a subtree of the higher tree

Height

As with union-by-size: O(log N)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support19

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Path Compression

During find make every node point to root

after find(14)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support20

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

A Very Slowly Growing Function

Definition

log∗ N is the number of times log needs to be applied to N until
N ≤ 1.

Examples

log∗ 2 = 1

log∗ 4 = 2

log∗ 16 = 3

log∗ 65536 = 4

...

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support21

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Equivalence Relations
The Dynamic Equivalence Problem
Basic Data Structure
Variants

Runtime

Consider variant

Union-by-height combined with path compression

Theorem

The running time of M unions and finds is O(M log∗ N).

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support22

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

1 External Sorting

2 Disjoint Sets

3 Java API Support for Data Structures
Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

4 Puzzlers

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support23

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

The Top-level Collection Interface

public inter face Co l l ec t i on <Any>
extends I t e r a b l e <Any>

{
i n t s ize () ;
boolean isEmpty () ;
void c l ea r () ;
boolean conta ins (Any x) ;
boolean add (Any x) ; / / s i c
boolean remove (Any x) ; / / s i c
java . u t i l . I t e r a t o r <Any> i t e r a t o r () ;

}

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support24

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

The List Interface in Collection API

public inter face L i s t <Any>
extends Co l l ec t i on <Any>

{
Any get (i n t i dx) ;
Any set (i n t idx , Any newVal) ;
void add (i n t idx , Any x) ;
void remove (i n t i dx) ;

L i s t I t e r a t o r <Any> l i s t I t e r a t o r (i n t pos) ;
}

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support25

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

ArrayList and LinkedList

public class Ar rayL i s t <Any>
implements L i s t <Any> { . . . }

public class L inkedL is t <Any>
implements L i s t <Any> { . . . }

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support26

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

Iterators

public inter face I t e r a t o r <Any> {
boolean hasNext () ;
Any next () ;
void remove () ;

}

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support27

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

ListIterators

public inter face L i s t I t e r a t o r <Any>
extends I t e r a t o r <Any>

{
boolean hasPrevious () ;
Any prev ious () ;
void add (Any x) ;
void set (Any newVal) ;

}

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support28

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

TreeSet

Implements Collection

Guarantees O(log N) time for add, remove and contains

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support29

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

AbstractMap<K,V>

Basic operations

V get(K key): Returns the value to which the specified key
is mapped.

V put(K key, V value): Associates the specified value with
the specified key in this map.

Other operations

containsKey(key), containsValue(val), remove(key)

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support30

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

TreeMap

Extends AbstractMap

Guarantees O(log N) time for put, get, containsKey,
containsValue, remove

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support31

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

HashMap

Extends AbstractMap

Uses separate chaining with rehashing

Rehashing is governed by initial capacity and load factor,
set in constructor

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support32

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

HashSet

Implements Collection using HashMap

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support33

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

PriorityQueue

Implements Collection

Efficient implementation of heap data structure
Operation names:

deleteMin is called “poll”
insert is called “add”

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support34

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Collections, Lists, Iterators
Trees
Hashing
PriorityQueue
Sorting

Sorting

Generic sorting supported by class Collections

Uses mergesort in order to minimize number of
comparisons

Sorting of built-in numerical types supported by class
Arrays

Uses efficient implementation of quicksort, to take
advantage of tight inner loop.

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support35

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

1 External Sorting

2 Disjoint Sets

3 Java API Support for Data Structures

4 Puzzlers

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support36

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Last Puzzler: Package Deal

package c l i c k ;
public class CodeTalk {

public void d o I t () {
printMessage () ;

}
void printMessage () {

System . out . p r i n t l n (” C l i c k ”) ;
} }

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support37

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Last Puzzler: Package Deal

package hack ;
import c l i c k . CodeTalk ;
public class TypeI t {

private s t a t i c class C l i c k I t extends CodeTalk {
void printMessage () {

System . out . p r i n t l n (” Hack ”) ;
} }
public s t a t i c void main (S t r i n g [] args) {

C l i c k I t c l i c k i t = new C l i c k I t () ;
c l i c k i t . d o I t () ;

} }

What does clickit . doIt () print? “Click” or “Hack”?

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support38

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Java’s Access Modifiers

public : available wherever the class is available

private : only available within the class

protected : available in subclasses and within same package

none : available within the same package

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support39

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

Access Modifiers Govern Inheritance

Overriding only available methods

A method can be overridden only when it is available according
to the modifier rules.

Package visibility

Method printMessage can only be overridden within package
click .

Result

”Click” is printed.

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support40

External Sorting
Disjoint Sets

Java API Support for Data Structures
Puzzlers

This Week and Beyond

Thursday tutorial: Assignment 9

Friday lecture: CS1102S summary, outlook; questions?

Next week: Reading week, consultation by appointment

27/4 and 28/4: no consultation

29/4, 5pm: Final

CS1102S: Data Structures and Algorithms 13 A: External Algorithms II; Disjoint Sets; Java API Support41

	External Sorting
	Model for External Sorting
	The Simple Algorithm
	Multiway Merge

	Disjoint Sets
	Equivalence Relations
	The Dynamic Equivalence Problem
	Basic Data Structure
	Variants
	Applications

	Java API Support for Data Structures
	Collections, Lists, Iterators
	Trees
	Hashing
	PriorityQueue
	Sorting

	Puzzlers

