13 A: External Algorithms; Disjoint Sets; Java API Support

CS1102S: Data Structures and Algorithms

Martin Henz

April 14, 2010
1. External Search Trees: B-Trees
2. External Sorting
3. Disjoint Sets
4. Java API Support for Data Structures
5. Another Puzzler
1. **External Search Trees: B-Trees**
 - Motivation
 - Definition of B-Trees
 - Insertion and Deletion

2. **External Sorting**

3. **Disjoint Sets**

4. **Java API Support for Data Structures**

5. **Another Puzzler**
Internal Storage

Assumption so far: random-access memory

Memory can be read and written at a speed $O(1)$
Internal Storage

Assumption so far: random-access memory

Memory can be read and written at a speed $O(1)$

Abstraction

Even for main memory accessible to the CPU through a fast data bus, this is a coarse simplification
Internal Storage

Assumption so far: random-access memory
Memory can be read and written at a speed $O(1)$

Abstraction
Even for main memory accessible to the CPU through a fast data bus, this is a coarse simplification

Complicating factors
- very fast memory on the CPU: registers
- cache hierarchy: layers of larger and slower memory units between CPU and main memory chips
- virtual memory: disk memory used when required memory exceeds physically available main memory
External Storage

Internal vs external storage

Internal storage is governed by electricity;
Internal vs external storage

Internal storage is governed by electricity; external storage is governed by mechanics.
External Storage

Internal vs external storage

Internal storage is governed by electricity; external storage is governed by mechanics.

Disk storage

Access time depends on speed of disk, e.g. 7,200 RPM.
External Storage

Internal vs external storage

Internal storage is governed by electricity; external storage is governed by mechanics.

Disk storage

Access time depends on speed of disk, e.g. 7,200 RPM.

How many disk accesses possible per second?
External Storage

Internal vs external storage

- Internal storage is governed by electricity;
- External storage is governed by mechanics.

Disk storage

- Access time depends on speed of disk, e.g. 7,200 RPM.

How many disk accesses possible per second?

- 120 accesses per second.
External Storage

Internal vs external storage

Internal storage is governed by electricity; external storage is governed by mechanics

Disk storage

Access time depends on speed of disk, e.g. 7,200 RPM

How many disk accesses possible per second?
120 accesses per second

How many instructions are executed per minute?
External Storage

<table>
<thead>
<tr>
<th>Internal vs external storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal storage is governed by electricity; external storage is governed by mechanics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access time depends on speed of disk, e.g. 7,200 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How many disk accesses possible per second?</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 accesses per second</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How many instructions are executed per minute?</th>
</tr>
</thead>
<tbody>
<tr>
<td>With 1.2-GIPS processor, we have 1,2 billion instructions per second,</td>
</tr>
</tbody>
</table>
External Storage

- **Internal vs external storage**
 - Internal storage is governed by electricity; external storage is governed by mechanics.

- **Disk storage**
 - Access time depends on speed of disk, e.g., 7,200 RPM.

- **How many disk accesses possible per second?**
 - 120 accesses per second.

- **How many instructions are executed per minute?**
 - With a 1.2-GIPS processor, we have 1.2 billion instructions per second, a factor of 10,000,000 faster than disks!
We know already

Access time is limited by mechanics
We know already

Access *time* is limited by mechanics

How about access *size*?
Another Characteristics of Disk Storage

We know already
Access *time* is limited by mechanics

How about access *size*?
defined by operating system/hardware design;
Another Characteristics of Disk Storage

We know already

Access *time* is limited by mechanics

How about access *size*?

defined by operating system/hardware design; typically large “chunks”, called *blocks*, of data can be read very fast, once the disk head has reached the correct location
Another Characteristics of Disk Storage

We know already

Access *time* is limited by mechanics

How about access *size*?

defined by operating system/hardware design;
typically large “chunks”, called *blocks*, of data can be read very fast, once the disk head has reached the correct location

Reading and writing in blocks

Reading and writing is typically done in large blocks to take advantage of this feature of disk storage
Search Trees—Revisited

Setup

We would like to quickly find out if a given data item is included in a collection.
Search Trees—Revisited

Setup

We would like to quickly find out if a given data item is included in a collection.

Example

In an underground carpark, a system captures the licence plate numbers of incoming and outgoing cars.
Search Trees—Revisited

Setup

We would like to quickly find out if a given data item is included in a collection.

Example

In an underground carpark, a system captures the licence plate numbers of incoming and outgoing cars.
Problem: Find out if a particular car is in the carpark.
Binary Search

Setup

Keep items in a tree. Each node holds one data item.
Binary Search

Setup
Keep items in a tree. Each node holds one data item.

Idea
The left subtree of a node V only contains items smaller than V and the right subtree only contains items larger than V.
Binary Search

Setup
Keep items in a tree. Each node holds one data item.

Idea
The left subtree of a node V only contains items smaller than V and the right subtree only contains items larger than V.

Search
can then proceed top-down, starting at the root. If the search item is smaller than the item at the root, go down to the left, and if it is larger, go right.
Both trees are binary trees, but only the left tree is a search tree.
Insertion

Idea
Proceed like in search. If item is found, do nothing. If not, insert it in the last visited position.

Example
Deletion

Idea

Proceed like in search. If item is not found, do nothing. If item is found, take action depending on node.
Deletion

Idea

Proceed like in search. If item is not found, do nothing. If item is found, take action depending on node.

Leaf

If the node is leaf, delete it from parent.
Deletion

Idea

Proceed like in search. If item is not found, do nothing. If item is found, take action depending on node.

Leaf

If the node is leaf, delete it from parent.

One child

If the node has one child, move the child to parent.
Average-case Analysis

Average Depth

If all insertion sequences are equally likely, the average depth of any node is $O(\log N)$
Average-case Analysis

Average Depth

If all insertion sequences are equally likely, the average depth of any node is $O(\log N)$

Deletion introduces imbalance

Deletion favours right subtree, and therefore trees become “left-heavy” on the long run.
A Cure: AVL Trees

Worst-case depth

We want to restrict all operations to $O(\log N)$ in the worst case.
A Cure: AVL Trees

Worst-case depth
We want to restrict all operations to $O(\log N)$ in the worst case.

AVL Trees
Make sure that the height of the subtrees of any node differ by at most one (Adelson-Velskii and Landis), using rebalancing if necessary.
A Cure: AVL Trees

Worst-case depth
We want to restrict all operations to $O(\log N)$ in the \textit{worst} case.

AVL Trees
Make sure that the height of the subtrees of any node differ by at most one (Adelson-Velskii and Landis), using rebalancing if necessary.

Bound
The height of an AVL tree is at most $1.44 \log(N + 2) - 1.328$, thus $O(\log N)$. In practice, the height is only slightly more than $\log N$.

Main issue

When data does not fit in main memory, the number of block accesses needs to be minimized
Search Trees with External Storage

Main issue
When data does not fit in main memory, the number of block accesses needs to be minimized

Overall idea
Put more data into each node; use n–ary trees instead of binary trees
Example of 5-ary Tree
A B-tree of order M is an M-ary tree with the following properties:

1. Data items are stored at leaves
2. Nonleaf nodes store up to $M - 1$ keys to guide search; key i represents smallest key in subtree $i + 1$
3. Root is either a leaf or has between two and M children
4. Non-leaf non-root nodes have between $\lceil M/2 \rceil$ and M children
5. Leaves are at same depth, have between $\lceil L/2 \rceil$ and L children
Example of B-Tree of Order 5
B-Tree Before Insertion of 57
B-Tree After Insertion of 57
Insertion of 55 Causes Split
Insertion of 40 Causes Two Splits
What if a Split Reaches the Root?

Splitting root is allowed

Create a new root, and have the two halves as children
What if a Split Reaches the Root?

Splitting root is allowed
- Create a new root, and have the two halves as children

Exception in definition makes sense
- Root can have between 2 and M children
What if a Split Reaches the Root?

Splitting root is allowed
Create a new root, and have the two halves as children

Exception in definition makes sense
Root can have between 2 and M children

Growing B-trees
Splitting root as result of insertion is the *only* way that a B-tree can gain height
Before Deletion of 99
After Deletion of 99
1. External Search Trees: B-Trees

2. External Sorting
 - Model for External Sorting
 - The Simple Algorithm
 - Multiway Merge

3. Disjoint Sets

4. Java API Support for Data Structures

5. Another Puzzler
Tapes as Storage

Similar to disks

Access time many orders of magnitude slower than main memory
Tapes as Storage

Similar to disks
Access time many orders of magnitude slower than main memory

Additional characteristics
Large amounts of data can be read \textit{sequentially} quite efficiently
Tapes as Storage

Similar to disks
Access time many orders of magnitude slower than main memory

Additional characteristics
Large amounts of data can be read *sequentially* quite efficiently

Access of previous locations
Tapes as Storage

Similar to disks
Access time many orders of magnitude slower than main memory

Additional characteristics
Large amounts of data can be read *sequentially* quite efficiently

Access of previous locations
is *extremely* slow, as it requires re-winding the tape!
External Sorting

Main idea

Use tapes sequentially, and read one block from each input tape.
External Sorting

Main idea
Use tapes sequentially, and read one block from each input tape

Merge blocks
Sort the blocks
Use merge procedure from mergesort to merge
The Simple Algorithm: Overview

Four tapes

Two input tapes; two output tapes
The Simple Algorithm: Overview

Four tapes
Two input tapes; two output tapes

Read and write runs
Read runs from input tape, sort them and write alternatively to output tapes
The Simple Algorithm: Overview

Four tapes
Two input tapes; two output tapes

Read and write runs
Read runs from input tape, sort them and write alternatively to output tapes

Continue, writing larger runs
Read two runs from each “output” tape, and merge them on the fly, writing alternatively to “input” tapes
The Simple Algorithm: Overview

Four tapes
Two input tapes; two output tapes

Read and write runs
Read runs from input tape, sort them and write alternatively to output tapes

Continue, writing larger runs
Read two runs from each “output” tape, and merge them on the fly, writing alternatively to “input” tapes

Continue
until one tape has all sorted data
Multiway Merge

Why only four tapes?

If we have more than four tapes, we can take advantage of them by using *multiway merge*.
Multiway Merge

Why only four tapes?

If we have more than four tapes, we can take advantage of them by using *multiway merge*.

How finding the smallest element during merge?
Multiway Merge

Why only four tapes?

If we have more than four tapes, we can take advantage of them by using *multiway merge*.

How finding the smallest element during merge?

Priority queue!
Multiway Merge

Why only four tapes?

If we have more than four tapes, we can take advantage of them by using *multiway merge*.

How finding the smallest element during merge?

Priority queue!

Each iteration of inner loop

`deleteMin` to find smallest element.
Multiway Merge

Why only four tapes?
If we have more than four tapes, we can take advantage of them by using *multiway merge*.

How finding the smallest element during merge?
Priority queue!

Each iteration of inner loop
deleteMin to find smallest element
insert new element from tape from which element was deleted.
Polyphase Merge and Replacement Selection

Polyphase merge: main idea

Make use of fewer tapes, by re-using tapes for reading and writing
Polyphase Merge and Replacement Selection

Polyphase merge: main idea
Make use of fewer tapes, by re-using tapes for reading and writing
Leading to tape organization using kth order Fibonacci numbers
Polyphase Merge and Replacement Selection

Polyphase merge: main idea
Make use of fewer tapes, by re-using tapes for reading and writing
Leading to tape organization using kth order Fibonacci numbers

Replacement selection: main idea
Make use of input tape as output tape, reusing the tapes “on the fly”
1. External Search Trees: B-Trees
2. External Sorting
3. Disjoint Sets
 - Equivalence Relations
 - The Dynamic Equivalence Problem
 - Basic Data Structure
 - Variants
4. Java API Support for Data Structures
5. Another Puzzler
Equivalence Relations

Definition

An equivalence relation is a relation R that satisfies three properties:

1. (Reflexive) aRa, for all $a \in S$.
2. (Symmetric) aRb if and only if bRa.
3. (Transitive) aRb and bRc implies aRc.
Equivalence Relations

Definition

An *equivalence relation* is a relation R that satisfies three properties:

1. (Reflexive) aRa, for all $a \in S$.
2. (Symmetric) aRb if and only if bRa.
3. (Transitive) aRb and bRc implies aRc.

Examples

- Electrical connectivity (metal wires between points)
- Cities belonging to same country
The Dynamic Equivalence Problem

Initial setup

Collection of N disjoint sets, each with one element
The Dynamic Equivalence Problem

Initial setup
Collection of N disjoint sets, each with one element

Operations
- $\textit{find}(a)$: return the set of which x is element
- $\textit{union}(a, b)$: merge the sets to which a and b belong, so that $\textit{find}(a) = \textit{find}(b)$
Fast Find, Slow Union

Use array `repres` to store equivalence class for each element
Strategies

Fast Find, Slow Union

Use array repres to store equivalence class for each element

- $\text{find}(a)$: return $\text{repres}[a]$
- $\text{union}(a, b)$: if $\text{repres}[x] = \text{repres}[b]$ then set $\text{repres}[x]$ to $\text{repres}[a]$
Strategies

Fast Find, Slow Union

Use array \(\text{repres} \) to store equivalence class for each element

- \textit{find}(a): return \(\text{repres}[a] \)
- \textit{union}(a, b): if \(\text{repres}[x] = \text{repres}[b] \) then set \(\text{repres}[x] \) to \(\text{repres}[a] \)

Fast Union, Reasonable Find

Union/find data structure
Basic Data Structure

Idea

Maintain forest corresponding to equivalence relation
Basic Data Structure

Idea
Maintain *forest* corresponding to equivalence relation

Union
Merge trees
Basic Data Structure

Idea
Maintain forest corresponding to equivalence relation

Union
Merge trees

Find
Return root of tree
Basic Data Structure

Idea
Maintain *forest* corresponding to equivalence relation

Union
Merge trees

Find
Return root of tree

Observe
Only upward direction needed!
Example

Initial setup:

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Example

Initial setup:

After `union(4, 5)`
Example

After \textit{union}(4, 5)
Example

After `union(4, 5)`

After `union(6, 7)`
Example

After $\text{union}(6, 7)$

Diagram showing the result of the union operation.
Example

After $\text{union}(6, 7)$

After $\text{union}(4, 6)$
Representation
Representation

Idea
Remember parent node only; mark root with \(-1\)
Representation

Idea

Remember parent node only; mark root with −1

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Problem

How to choose root for union? Bad choice can lead to long paths
Variants

Problem

How to choose root for union? Bad choice can lead to long paths

Union-by-size

Always make the smaller tree a subtree of the larger tree
Variants

Problem
How to choose root for union? Bad choice can lead to long paths

Union-by-size
Always make the smaller tree a subtree of the larger tree

Analysis
When depth increases, the tree is smaller than the other side. Thus, after union, it is at least twice as large.
Variants

Problem
How to choose root for union? Bad choice can lead to long paths

Union-by-size
Always make the smaller tree a subtree of the larger tree

Analysis
When depth increases, the tree is smaller than the other side. Thus, after union, it is at least twice as large.

Height
less than or equal to \(\log N \)
Variants

Union-by-height

Always make the shorter tree a subtree of the higher tree
Variants

Union-by-height

Always make the shorter tree a subtree of the higher tree

Height

As with union-by-size: $O(\log N)$
Path Compression

During \textit{find} make every node point to root
Path Compression

During *find* make every node point to root
Path Compression

During *find* make every node point to root

During find make every node point to root

after find(14)
A Very Slowly Growing Function

Definition

\(\log^* N \) is the number of times \(\log \) needs to be applied to \(N \) until \(N \leq 1 \).

Examples

- \(\log^* 2 = 1 \)
- \(\log^* 4 = 2 \)
- \(\log^* 16 = 3 \)
- \(\log^* 65536 = 4 \)
- ...
Consider variant

Union-by-height combined with path compression
Consider variant

Union-by-height combined with path compression

Theorem

The running time of M unions and finds is $O(M \log^* N)$.
1. External Search Trees: B-Trees
2. External Sorting
3. Disjoint Sets
4. Java API Support for Data Structures
 - Collections, Lists, Iterators
 - Trees
 - Hashing
 - PriorityQueue
 - Sorting
5. Another Puzzler
The Top-level Collection Interface

```java
public interface Collection<Any>
    extends Iterable<Any>
{
    int size();
    boolean isEmpty();
    void clear();
    boolean contains(Any x);
    boolean add(Any x);  // sic
    boolean remove(Any x);  // sic
    java.util.Iterator<Any> iterator();
}
```
The List Interface in Collection API

```java
public interface List<Any>
    extends Collection<Any>
{
    Any get(int idx);
    Any set(int idx, Any newVal);
    void add(int idx, Any x);
    void remove(int idx);

    ListIterator<Any> listIterator(int pos);
}
```
ArrayList and LinkedList

```java
public class ArrayList<Any>
    implements List<Any>  {...}

public class LinkedList<Any>
    implements List<Any>  {...}
```
Iterators

```java
public interface Iterator<Any> {
    boolean hasNext();
    Any next();
    void remove();
}
```
public interface ListIterator<Any> extends Iterator<Any>
{
 boolean hasPrevious();
 Any previous();
 void add(Any x);
 void set(Any newVal);
}
TreeSet

- Implements Collection
- Guarantees $O(\log N)$ time for add, remove and contains
AbstractMap<K, V>

Basic operations

- V get(K key): Returns the value to which the specified key is mapped.
- V put(K key, V value): Associates the specified value with the specified key in this map.
AbstractMap\(\langle K, V \rangle\)

Basic operations
- \(V \text{get}(K \text{ key})\): Returns the value to which the specified key is mapped.
- \(V \text{put}(K \text{ key}, V \text{ value})\): Associates the specified value with the specified key in this map.

Other operations
- containsKey(key), containsValue(val), remove(key)
TreeMap

- Extends AbstractMap
- Guarantees $O(\log N)$ time for put, get, containsKey, containsValue, remove
HashMap

- Extends AbstractMap
- Uses separate chaining with rehashing
- Rehashing is governed by initial capacity and load factor, set in constructor
HashSet

- Implements Collection using HashMap
PriorityQueue

- Implements Collection
- Efficient implementation of heap data structure
- Operation names:
 - deleteMin is called “poll”
 - insert is called “add”
Sorting

- Generic sorting supported by class Collections
Generic sorting supported by class Collections
Uses mergesort in order to minimize number of comparisons
Sorting

- Generic sorting supported by class Collections
- Uses mergesort in order to minimize number of comparisons
- Sorting of built-in numerical types supported by class Arrays
Sorting

- Generic sorting supported by class Collections
- Uses mergesort in order to minimize number of comparisons
- Sorting of built-in numerical types supported by class Arrays
- Uses efficient implementation of quicksort, to take advantage of tight inner loop.
1. External Search Trees: B-Trees
2. External Sorting
3. Disjoint Sets
4. Java API Support for Data Structures
5. Another Puzzler
Java uses pass-by-value parameter passing.

```java
public static void tryChanging(int a) {
    a = 1;
    return;
}

... 

int b = 2;
tryChanging(b);
System.out.println(b);
public static void tryChanging(SomeObject obj) {
    obj.someField = 1;
    obj = new SomeObject();
    obj.someField = 2;
    return;
}

...  
SomeObject someObj = new SomeObject();
tryChanging(someObj);
System.out.println(someObj.someField);
Remember Lecture 7 A: Sorting

Input
Unsorted array of elements

Behavior
Rearrange elements of array such that the smallest appears first, followed by the second smallest etc, finally followed by the largest element
public static <AnyType extends Comparable<? super AnyType>]
void mergeSort( AnyType [] a) {
    AnyType[] ret = ..;  // declare helper array
    ....  // here goes a program that places
    ....  // the element of "a" into "ret" so
    ....  // that "ret" is sorted
    a = ret;
    return;
}

...  
Integer[] myArray = ...;
IterativeMergeSort.mergeSort(myArray);
Will This Work?

```java
public static <AnyType extends Comparable<? super AnyType>> void mergeSort(AnyType[] a) {
 AnyType[] ret =; // declare helper array
 // here goes a program that places
 // the element of "a" into "ret" so
 // that "ret" is sorted
 a = ret;
 return;
}

... Integer[] myArray = ...;
IterativeMergeSort.mergeSort(myArray);

Answer: No! The assignment a = ret; has no effect on
myArray!
```
This Week and Beyond

- Thursday tutorial: outstanding assignments and labs
- Friday lecture: CS1102S summary, outlook; questions?
- Next week: Reading week, consultation by appointment
- 3/5, morning: Final