Digital Logic Design

Errata

- Page 6: Table 1-1. The symbol for milli- should be m instead of M.
- Page 40: Hamming Distance, last line in second paragraph:
"... of a code by k / p " should be "... of a code by k / n ".
- Page 43: 2-19. "Which of ... in Figure 2.4?"

The correct figure should be "Figure 2.2".

- Page 76: Figure 4-29.

The signal for B in the figure on the right is incorrect. The correct diagram is shown below:

Figure 4-29 Propagation delay in a circuit.

- Page 185: Figure 8.23. Missing label " $0 / 0$ " from state 0 to state 1.
- Page 240: Answer for 2-29. Smallest negative value should be -31.75.
- Page 242: Answer for 6-6. The truth table, expressions and circuit for W are wrong. Please see page 2 for correct answers.
- Page 246: Answer for 8-11. The next states for the unused states, and the state diagram are wrong. Please see page 3 for correct answers.

Chapter 6

6-6.

A	B	C	D	W	X	Y	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1

A	B	C	D	W	X	Y	Z
1	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1
1	0	1	0	1	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	1	0
1	1	1	1	1	0	0	1

$$
\begin{array}{ll}
W=A \cdot B+A \cdot C+A \cdot D & ; W=A \cdot(B+C+D) \\
X=A^{\prime} \cdot B+B \cdot C^{\prime} \cdot D^{\prime}+A \cdot B^{\prime} \cdot C+A \cdot B^{\prime} \cdot D & ; X=(A+B) \cdot(B+C+D) \cdot\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}+D^{\prime}\right) \\
Y=A^{\prime} \cdot C+C \cdot D^{\prime}+A \cdot C^{\prime} \cdot D & ; Y=(A+C) \cdot(C+D) \cdot\left(A^{\prime}+C^{\prime}+D^{\prime}\right) \\
Z=D & ; Z=D
\end{array}
$$

Chapter 8

8-11. $\quad T A=A \cdot B+B \cdot C$ or $A \cdot B+A^{\prime} \cdot C$
$T B=C$
$T C=A^{\prime}+B^{\prime}$
The following are the next states for the unused states:
$000 \rightarrow 001$
$001 \rightarrow 010$ or 110
$111 \rightarrow 001$

Present state				Next state				Flip-flop inputs		
A	B	C	A^{+}	B^{+}	C^{+}	$T A$	$T B$	$T C$		
0	0	0	X	X	X	X	X	X		
0	0	1	X	X	X	X	X	X		
0	1	0	0	1	1	0	0	1		
0	1	1	1	0	0	1	1	1		
1	0	0	1	0	1	0	0	1		
1	0	1	1	1	0	0	1	1		
1	1	0	0	1	0	1	0	0		
1	1	1	X	X	X	X	X	X		

The circuit is self-correcting.

