CS2100

NATIONAL UNIVERSITY OF SINGAPORE

CS2100 - COMPUTER ORGANISATION
(Semester 2: AY2016/17)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This assessment paper consists of SIX (6) questions and comprises TWELVE (12) printed
pages.

2. This is a CLOSED BOOK assessment. One handwritten double-sided A4 reference sheet is
allowed. Calculators are not allowed.

Answer all questions and write your answers in the ANSWER BOOKLET provided.

Fill in your Student Number with a pen clearly on your ANSWER BOOKLET.

You may use pencil to write your answers.

Page 9 contains the MIPS Reference Data sheet and page 10 contains the MIPS Datapath.

Pages 11 and 12 are for your rough work.

© N o U B~ W

You are to submit only the ANSWER BOOKLET and no other document.

Page 1 0f 12



CS2100

1. [10 marks]
A theme park offers locker rental to its visitors. To use a locker, a visitor deposits 4
tokens, one at a time, into the locker’s token slot.

Design a sequential circuit with states ABC for the locker’s door using a D flip-flop for A,
a T flip-flop for B, and a JK flip-flop for C. The circuit consists of 5 states representing the
number of tokens a visitor has deposited: 0, 1, 2, 3 and 4 (or, in binary, ABC = 000, 001,
010, 011 and 100). The visitor can deposit only one token at a time. When the circuit
reaches the final state 4, it remains in state 4 even if the visitor continues to put tokens
into the slot.

Let the external input t denotes a token.

a. Complete the given state diagram on the Answer Booklet. The state values are

shown in decimal. The value on the arrow represents t. [2 marks]
@'
b. Write the simplified SOP expressions for the flip-flop inputs. [8 marks]

2. [10 marks]
a. Given the following Boolean function:

F(A,B,C,D) =m(1, 4, 5, 6, 7, 13)

You are to implement F using a single 2-bit magnitude comparator with no
additional logic gates. Note that complemented literals are not available. [5 marks]

b. Given the following Boolean function:
G(A,B,C,D) ==m(2, 11)

You are to implement G using a single 2x4 decoder with one-enable and active high
outputs, and one 2-input exclusive-OR gate. Note that complemented literals are
not available. [5 marks]

Page 2 of 12



3.

CS2100

[10 marks]
Study the following MIPS program. Arrays A and B are integer arrays.

# $s0 contains the starting address of array A
# $Ssl contains the starting address of array B
add $s2, $s0, $zero #inst 1
add $s3, $sl, $zero #inst 2
Ll: 1w $t0, 0($s2) #inst 3
1w $tl, 0($s3) #inst 4
bne $t0, $zero, L2 #inst 5
beq $tl, $zero, done #inst 6
L2: slt $t2, $t0, $t1 #inst 7
beq $t2, $zero, L3 #inst 8
sw $t0, 0($s3) #inst 9
sw $tl, 0($s2) #inst 10
L3: addi $s2, $s2, 4 #inst 11
addi $s3, $s3, 4 #inst 12
3j Ll #inst 13
done:

Give the instruction encoding in hexadecimal for instruction 1 (add $s2, $s0, $zero).
The opcode for add is 0 and the funct value for add is 0x20. [2 marks]

Give the instruction encoding in hexadecimal for instruction 6 (beq $t1, $zero,
done). The opcode for beq is 0x04. [2 marks]

If instruction 13 (j L1) is at memory address 0xE0480030, give the instruction
encoding in hexadecimal for instruction 13. The opcode for jump is 0x02
[2 marks]

The following are the initial values of the array elements in arrays A and B.

Array A: 3 -1 7 0 2 |59 0] 91
Array B: 2 5 7 3 6 0 8 0O|-3] 2
Fill in the final values of the elements. [4 marks]

Page 3 of 12



CS2100

4. [35 marks]

Zephyr is a 32-bit stack-based processor with the specifications shown below. In this
table, registers “x” and “y” serve as placeholders for actual general purpose registers
$1, S2, ..., S8, the capital letter “V” refers to a single variable, the capital letter “A”
refers to the first element of an array, and the small letter “c” refers to a constant. The
capital letters “X” and “Y” refer to the top-most and second elements of the stack

respectively. All constants and displacements are 2’s complement signed values.

Addressing Architecture: Stack based.

Number of General Purpose Registers: Eight (81, $2, ..., $8)

Special registers: Stack pointer (Ssp)

Program counter (Spc)

Instruction formats: Fixed length 32-bit instructions

Arithmetic instructions: ADD: X and Y are popped off the stack,
X+Y are pushed back onto the stack.

SUB: X and Y are popped off the stack,

Arithmetic instructions. X is the top-most ]
X-Y is pushed back onto the stack.

operand on the stack, Y is the next
operand in the stack. MUL: X and Y are popped off the stack,
X*Y is pushed back onto the stack.

DIV: X and Y are popped off the stack.
X/Y is pushed back onto the stack.

Stack instructions: PUSHI c: Push immediate value c onto
the stack.

Stack manipulation instructions. Special PUSH Sy: Push register y onto the stack.

register Ssp points to the top-most | POP Sy: Pop topmost item on the stack
element of the stack. Stacks are assumed | into registery.

to be arbitrarily large, while popping an
empty stack will cause an error, but we
WILL NOT consider that here. We will
assume that the stack is never empty nor
full.

ZERO: Reset Ssp to bottom of stack.

Page 4 of 12



4.

(continued)

CS2100

Load/Store Instructions:

These are load and store instructions
that get data from memory to registers
and vice versa.

All addresses are byte addresses.

LW Sy, $x: Load 32-bit word stored in
address pointed to by register x into
registery.

SW Sy, $x: Store 32-bit word in register
y, into the address pointed to by register
X.

LB Sy, $x: Load a single byte stored in the
address indicated by register x, into the
lowest (bits 7-0) bits of register y.

SB Sy, $x: Store the lowest 8-bits (bits 7-
0) of register y into the byte address
indicated by register x.

LDI Sy, c: Store immediate constant c
into registery.

LDI Sy, V: Store address of variable V into
registery.

LDI Sy, A: Store base address of array A
into registery.

INCW Sy: Register y is incremented by 4.

DECW Sy: Register y is decremented by
4,

INC Sy: Register y is incremented by 1.
DEC $y: Register y is decremented by 1.

B-type instructions:

These are and branch

instructions.

compare

BEQ Sx, Sy, displ: Jump to address
(Spc+4) + 4*displ if register x == register
y.

BNE $x, Sy, displ: Jump to address
(Spc+4) + 4*displ if register x = register y
BLT S$x, Sy, displ: Jump to address
(Spc+4) + 4*displ if x<y

BGT S$x, Sy, displ: Jump to address
(Spc+4) + 4*displ if x>y

Page 5 of 12



CS2100

4. (continued)

a. Using the instruction set given above, write the Zephyr assembly language
equivalent of this program. Ensure that your code is properly commented. [5 marks]

for (i=0; i<5; i++)
if (x[i] < 3)
x[i] = x[i] + 5;

All offsets in Zephyr are expressed as 16-bit word addresses, while registers are
expressed as 3-bit register numbers (000,=51, 001,=52, ..., 111,=$8). Similarly, all
constants in Zephyr are 16-bit long.

There are six classes of instructions:
A: No operands (e.g. ADD)
B: One register operand (e.g. PUSH $1)
C: One constant operand (e.g. PUSHI c)
D: One register and one constant operand (e.g. LDI $1, c)
E: Two registers (e.g. LW $1, $2)
F: Two registers and a displacement (e.g. BEQ $1, $2, displ)

b. Sketch the instruction formats for all 6 classes, assuming that all 32 bits of a Zephyr
instruction word are utilized fully, and that we maximize the number of opcode bits
possible each time. [12 marks]

c. If we utilize an expanding opcode scheme for Zephyr, what is the maximum number
of opcodes possible, assuming that there are at least one instruction in each class?
Show your working and reasoning process. Where convenient you may leave your
answers in terms of powers of 2. [5 marks]

d. What is the minimum number of opcodes possible, assuming that there are at least
one instruction in each class? Show your working and reasoning process. Again,

where convenient you may leave your answers in terms of powers of 2. [5 marks]

e. What is the furthest forward distance that you can branch to, in the BEQ, BNE, BLT
and BGT instructions? Express your answer in number of instructions. [2 marks]

f. Suppose that we have an array A of words (i.e. we access elements of A one word at
a time). What is the maximum size of A, expressed in words? [3 marks]

g. Suppose again that we have an array B of bytes (i.e. we access elements of B one
byte at a time). What is the maximum size of B, expressed in bytes? [3 marks]

Page 6 of 12



[15 marks]

CS2100

In this question we want to modify the (non-pipelined) MIPS datapath to support two
new instructions: BLT and BGT — “branch on less than” and “branch on greater than”.

The BLT and BGT instructions are shown below:

BLT:

0x08 rs rt displ
BGT:

0x12 rs rt displ

a. The ALU for the MIPS processor is shown below as a single block with two 32-bit
inputs, and one 32-bit output. Show, by adding AT MOST ONE 32-input logic gate
and any additional wires, how to generate the IsZero and IsNegative signals. The
IsZero signal is 1 when ALUIn1 — ALUIn2 is zero, and the IsNegative signal is 1 when

ALUIn1 — ALUINn2 is negative.

32

/

/

0

b. The CONTROL unit

>

-

ALUIn1

ALUIn2

K ALUControl

ALUOut

~

32

J

4

[4 marks]

in the datapath must now generate BranchlLess and
BranchGreater signals from the instruction bits. Sketch the combinational circuits to
generate these signals.

[5 marks]

For your convenience the MIPS datapath is shown in page 10. Sketch the

combinational logic circuit needed to generate the PCSrc control signal to support
the BEQ, BLT and BGT instructions.

Page 7 of 12

[6 marks]



CS2100

6. [20 marks]
Suppose we have a cache that has an access time of 5ns, and a main memory with an
access time of 80ns.

a.

What is the memory access time when you have a cache hit? [2 marks]

What is the memory access time when you have a cache miss? [3 marks]

You run some benchmarks on your system and find that 10,000 accesses take a
total of 70 microseconds (1 microsecond = 1000 nanoseconds). What is the miss
rate of your cache? [5 marks]

Your cache is implemented as a 4-way set associative write-back cache totaling 64KB.
Each cache block holds 8 words of 4 bytes each. CPU addresses are 32 bits long.

d.

How many bits per set do you require to store the tags? [4 marks]

Assuming that the 64KB of cache refers purely to “usable cache” — i.e. cache that
is used only to store data or instructions, and not overheads like tag bits, what is
the total amount of static RAM that you require to implement this cache?

[6 marks]

~~ END OF PAPER ~~~

(The next two pages contain the MIPS Reference Data sheet and the MIPS Datapath.)

Page 8 of 12



®©

M I P s Reference Data

CORE INSTRUCTION SET OPCODE
FOR- /FUNCT
NAME, MNEMONIC  MAT OPERATION (in Verilog) {Hex)
Add acd R R[rd] = R[rs] + R[rt] (1) 0/ 20p,
Add Immediatc addi I R[rt] = R[rs] + SignExtimm (1.2} By
AddImm. Unsigned zddia I R[rt] = R[rs] + SignExtlmm (2) Yex
Add Unsigned addu R R[rd] = R[rs] + R[n] 0/ 2l pex
And and R R[rd] = R[rs] & R[r1] 0/ 24,
And Immediate andi I R[rt] = R[rs] & ZeroExtlmm (1) Opes
BeanchOn bqual  be 1 IR o @ e
Branch On Not Equal bne [ lrl("]({_‘[l—‘;"](!_‘iﬁggzanch.%ddr (4) Shex
Jump ] ] PC=lumpAddr (5} Zhex
Jump And Link jal T R[31]=PC+8PC=JumpAddr (5)  Ipex
Jump Register ir R PC=R[rs] 07 08pey
Load Byte Unsigned Lbu 1 R[rl]:{fg;bgg'ggﬁgi]](7:o]) @ 2440
Load Halfword R[rt]={16"b0,M[R[rs]

Unsigned thu 1 +SignExtImm](15:0)} @) hex
Load Linked il [ Rrt] =M[R[rs]+5ignExtlmm]  (2.7) 30y,
Load UpperImm.  .ui [ R[rt]= {imm, 16’b0} Fluex
Load Word Lw 1 R[rt] = M[R[rs] +SignExtlmm] (27 2,
Nor nor R R[rd] =~ (R[rs] ‘ RIn]} 07 2
Or or R R[rd] =R[rs] | R[r1] 07250,
Or Immediate ori I R[rt] = R[rs] | ZeroExtImm (3 dpy
Set Less Than a1t R Rird]—{RJrs] < R[eth?1:0 0/ 2ay,,
Set Less Than Imm. s1ti I R[n]=(R[rs] < SignExtImm)? 1: G{2)  ape
Set Less.Than Imim. slein ] R[] = (R[rs] < SignExttmm) By

Unsigned ?1:0 {2.6) *
Set Less Than Unsig, s1=u R R[rd] {R[rs]<R[rt])?1:0 (6) 0/ 2by,,
Shift Left Logical =11 R R[rd] = R[rt] << shamt 0/ 00y,
Shift Right Logical =r1 R R[rd] = R[zt] >> shamt 0/ 02
Store Bytc o I M[R[rs]+ SignExlllr;}?:]]((;‘::g]): o 2Bpen
Storc Conditional  <¢ [ MIR[rs] J;:'[lr%]" ETS::::]L):?RI[ fﬂo 2.7 I8ien
Store Halfword zh I M[R[rs]*Signl:‘xtlm;][]r(lﬁ l[? 0=) ) 2ex
Storc Word sw 1 M[R[rs]+SignExtimm] = R[rt] {2)  2bp,,
Subtract sub R R[rd]= R[rs] - R[rt] 1y O/ 22,
Subtract Unsigned  subu R R[rd] = R[ts] - R[rt] 0/ 23,

(1} May cause overflow exception

(2) SignExtlmm = { 16{immediate[15]}, immediate }

(3) ZeroExlmm = § 16 [b 0} immediate }

(4) BranchAddr - { 14{immecdiatc[15]}, immcdiate, 2700 }

(5) JumpAddr = { PC~4[31:28], address, 2°b0 }

(6) Operands considered unsigned numbers {vs. 2’s comp.)

(7) Atomic testdeset pair; R[et] = | if pair atomic. 0 if not atomie

BASIC INSTRUCTION FORMATS

R | opeode | IS | rt ‘ rd I shamt ‘ funet
M R iE 21 20 16 15 0 63 o
1 [ opeode Is [ rt i immediate
31 26 25 a®m s ) T
J opeode | _ address - J
31 26 25 o

C€S2100

ARITHMETIC CORE INSTRUCTION SET OPCODE
/FMT /FT
FOR- { FUNCT
NAME, MNEMONIC  MAT OPERATION {Hcx)
Branch On FPTrue belt FLoOif{FPeond)PC=PC+4+BranchAaddr {4) 11/8/1/--
Branch On FP False telt FI iff!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/--
Dhvide div R Lo=R[rs]/R[rt]; H=R[rs]%R[1t] Oi—-I—-Ila
Divide Unsigned  divu R Lo=R[rs]/R[cet]; Hi=R[rs]%R[rt] {6} G~~/--/1b
FP Add Single add.= FR F[fd ]= F[fs] + F[fi] 11/10/--/0
FP Aadd FfaL,F[fd+ 11} = {FIfsLF[fs+11} +
o aca.a PR (FIRLFIGHL {{F[[ﬁ]]!F[[ﬁH]]}} 1140
FP Compare Single cx.s®* FR FPeond=(F[fs]op F[R])? 1 : 0 L1107ty
FP Compare . FPeond = ({F[fs),F[fs+1]} o
o Comp cxdt FR {F[[fg]f[[ﬂﬂ}” Pl Ly
*xiseq 11, or o) (opis==, < or <=) (¥ is 32, 3¢, or 3c)
FP Divide Single  a1v.s FR E[fd] = F{fs]/ F[fi] 11710473
FP Divide ) F[fa],F[fd+11} = {F[fs],F[fs+1]} /
Db siv.a PR {FTRILFIR 1} {{F[[fl]]f[[ﬂ*l}}) 113
FP Multiply Single mul.= FR F[fd] = F[fs] * F[f] 11410572
FP Multipl F(fd],F[fd+1]} = {F[fs),F[fs+1]} *
Doultiply g FRAFIRLELR-LD {{F[[ﬁ]]f[[ﬂﬂ]])} A2
FP Subtract Single subh.s FRF[fd]=F[fs] - F[fi] 1141041
FP Subtract F[fd),F[fd+1]} = {F[fs].F[fs+1]} -
o cup.s PR CCRLF(EH]Y {{F[[n]],F[[ﬁu]]}} LA
Load FP Single Lwcl 1 FlrtlEM[R[rs]+SignExtlmm)] {2y 3li-etefe
Load FP Ldel [ Flttl=M[R[rs]+SignExtlmm]; {2) 35/ fee
Double Flrt+ 1 ]=M[R[rs ]+ SignExtImm-+4] :
Move From Hi mfhi R R[rd]=Hi O /10
Move From Lo mEle R R[rd]=Lo O /412
Move From Control mfct R R[rd] = CR[rs) 10/0/--10
Multiply milt R {HiLo}=R[rs] * R[r] Of-—i=-(18
Multiply Unsigned multa R {Hi,Lo} =R[rs] * R[r] (6] 0/--i--{19
Shift Right Arith. sra R R[rd]) = R[tt] >>> shamt 04f--13
Store FP Single swol I M[R[rs]+SignExtlmm] = F[rt] {2) 39/enfeni-n
Store FP cde- 1 MI[R[rs]+SignExtlmm] = F[rt]; 2) I fetanto
Double - MIR[rs+SignExtimm+4] = F[rt+1]
FLOATING-PQINT INSTRUCTION FORMATS
FR | opeode | fmit ‘ ft | fs fd funct l
30 26 25 2020 16 15 I [E] b
] | opeode | fmt ‘ ft immediate J
T 2623 w1618 T T
PSEUDQINSTRUCTION SET
NAME MNEMONIC OPERATION
Branch Less Than blt if{R[rs]<R[rt]} PC -- Label
Branch Greater Than bar if(R[rs]>R[rt]) PC = Label

Branch Less Than or Equal ble if(R[rs]<=R[rt]) PC = Label
Branch Greater Than or Equal bge if(R[rs]>=R[rt]) PC = Label
Load Immcdiate 1i R[rd] = immediate

Move R[rd] = R[rx]
REGISTER NAME, NUMBER, USE, CALL CONVENTION

mave

PRESERVEDACROSS
NAME NUMBER USE A CALL?
$zcro [1] The Constant Value 0 NA.
fat 1 Assembler Temporary No
$vD-Bvl 3.3 Valugs for Fpnctlon chults No
and Expression Evaluation
$a0-$a3 4-7  Argumcnts No
$t0-$17 8-15  Temporarics No
$s0-Fs7 [6-23  Saved Temporarics Yes
3t8-$19 24-25  Temporanes No -
Bh-3k 1 26-27  Reserved for OB Kemel No
Sp 28 Cilobal Pointer Yes
$sp 29 Stack Peinter Yes
1313 0 Frame Pointer Yes
Jra 31 Return Address Yes

Copyright 2009 by Elscvicr, Ine., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th cd.

Page 9 of 12



CS2100

Instruction
Memory

Instruction

Address

PC

9Z:1¢
apoodo
000000

Inst [25:21]

Add

Left Shift
2-bit

T2-5¢
sx
TO0TO

L 4

91-0¢

11
OTOTO

PI

Inst [10:16]

TT:-ST
000TO

9:0T
Jueys
00000

Inst [15:11] X

RegDst

Inst [15:0]

RR1 RD1

RR2
Registers
WR

RD2

— | WD

RegWrite

°9

Joung
00000T

Sign
Extend

A

Add |— X

PCSrc

ALUcontrol

yjedejeq aj)sjdwon

MemWrite
|

Address

Data

MemToReg
Memory
Read

Write Data

h 4

" Data U

x

MemRead

Page 10 of 12



CS2100

(This page is for your rough work.)

Page 11 of 12




CS2100

(This page is for your rough work.)

Page 12 of 12



