NATIONAL UNIVERSITY OF SINGAPORE

CS2100 - COMPUTER ORGANISATION

(Semester 2: AY2017/18)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This assessment paper consists of SEVEN (7) questions and comprises FOURTEEN (14) printed pages.
2. This is a CLOSED BOOK assessment. One double-sided A4 reference sheet is allowed.
3. Calculators and computing devices such as laptops and PDAs are not allowed.
4. Answer all questions and write your answers in the ANSWER BOOKLET provided.
5. Fill in your Student Number clearly with a pen on your ANSWER BOOKLET.
6. Do NOT write your name on your ANSWER BOOKLET.
7. You may use pencil to write your answers.
8. Page 9 onwards contain a blank page, the MIPS Reference Data Sheet and several blank tables for your rough works.
9. You are to submit only the ANSWER BOOKLET and no other document.
10. [10 marks]
(a) Write the output of the following C program.
```
#include <stdio.h>
typedef struct {
    int val;
    char ch[2];
    rec_t;
void process1 (rec_t *);
void process2 (rec_t);
int main(void) {
    rec_t st[2] = {{11,{'A','B'}}, {22,{'C','D'}}};
    process1(&st[1]);
    process2(st[0]);
    printf("%d %c\n", st[0].val, st[0].ch[0]);
    printf("%d %c\n", st[1].val, st[1].ch[1]);
    return 0;
}
void process1(rec_t *para) {
    para->val = 3\overline{3}
    para->ch[0] += ('a' - 'A') + 1;
    para->ch[1] += ('a' - 'A') + 2;
}
void process2(rec_t para) {
    para.val = 44;
    para.ch[0] += ('a' - 'A') + 3;
    para.ch[1] += ('a' - 'A') + 4;
}
```

(b) Given the following hexadecimal representation in IEEE 754 single-precision floatingpoint number system:

42 F 64000

What is the decimal value it represents?

1. (continue...)
(c) Given the logic circuit below:

(i) What is F ?
(ii) What is the circuit propagation delay if the propagation delay of a NAND gate with fan-in of n is $n t$?
[1 mark]
2. [15 marks]

A sequential circuit goes through the following states, whose state values are shown in decimal:

The states are represented by 4-bit values $A B C D$. Implement the sequential circuit using a D flip-flop for A, a D flip-flop for B, a T flip-flop for C, and a $J K$ flip-flop for D.
a. Write out the simplified SOP expressions for all the flip-flop inputs.
[10 marks]
b. Implement your circuit according to your simplified SOP expressions obtained in part (a). Complete the given state diagram on the Answer Booklet, by indicating the next state for each of the five unused states.
3. [20 marks]
(a) Given the following circuit, what is F?

(b) Given $G(A, B, C, D)=\Pi M(1,2,6,8,9,11,13)$, implement G using a single $8: 1$ multiplexer without any additional logic gates. Complemented literals are not available. [4 marks]
(c) Given $H(A, B, C, D)=\Sigma m(12,13)$, implement H using a single 2×4 active high output decoder with 1-enable, without any additional logic gates. Complemented literals are not available.
[4 marks]
(d) The BCD code (also known as 8421 code) values for the ten decimal digits are given below:

Digit:	0	1	2	3	4	5	6	7	8	9
Code:	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

For example, the decimal value 396 is represented in BCD code as 001110010110.
Given two decimal digits A and B, represented by their BCD codes $A_{3} A_{2} A_{1} A_{0}$ and $B_{3} B_{2} B_{1} B_{0}$ respectively, implement a circuit without using any logic gates to calculate the BCD code of the 3 -digit output of $(51 \times A)+(20 \times(B \% 2))$, where $\%$ is the modulo operator. Name the outputs $F_{11} F_{10} F_{9} F_{8} F_{7} F_{6} F_{5} F_{4} F_{3} F_{2} F_{1} F_{0}$. You are free to use the logical constants 0 and 1.

For example, if $A=2$ (or 0010 in $B C D$) and $B=7$ (or 0111 in BCD), then ($51 \times A$) $+(20 \times(B \% 2)$) $=122$ or 000100100010 in BCD. Hence, the circuit is to produce the output 00010010 0010 for the inputs 0010 and 0111.
(Hint: To help you, you may fill in the table on the Answer Booklet that computes $5 \times A$. This table is worth 2 marks.)
4. [12 marks]
(a) Suppose MIPS instructions in R-format must use the following five opcodes (in decimal): $0,1,16,17$ and 32 , what is the maximum total number of instructions that can be supported in MIPS?
[2 marks]
(b) Suppose due to a hardware defect in the datapath circuit, a stuck-at-0 fault occurs at bit 6 of every MIPS instruction. This means that bit 6 of a MIPS instruction is always 0 regardless of what the instruction is originally. Devise a simple test using a MIPS instruction to discover this error. Explain your test. Keep your explanation clear and short, in no more than 2 sentences.
[3 marks]
(c) The diagram on the right shows a portion of the datapth.

Suppose the stuck-at-0 fault occurs at the ALUSrc control signal. Assuming that $\mathbf{\$ t 0}$ and $\mathbf{\$ t 1}$ contains 12 and 34 respectively, and we are to use the instruction Iw \$t1, $\mathbf{0} \mathbf{(\$ \mathbf { t } 0)}$ to discover the error. Describe what other preparation work needs to be done. You may assume that we can write data into any location in the memory. [3 marks]

(d) The table below shows the ALUcontrol signal of the datapath we discussed in class.

Opcode	ALUop	Instruction operation	Funct field	ALU action	ALU control
Iw	00	load word	xxxxxx	add	0010
sw	00	store word	xxxxxx	add	0010
beq	01	branch equal	xxxxxx	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	AND	0000
R-type	10	OR	100101	OR	0001
R-type	10	set on less than	101010	set on less than	0111

You want to add the bne instruction into the datapath, which already includes the required hardware for the instruction. Write out the ALUop for bne and how you can determine whether the bne results in the branch to be taken.
5. [15 marks]

Study the MIPS program below. A and B are integer arrays whose base addresses are in \$s0 and \$s1 respectively. The arrays are of the same size n (number of elements). \$s2 contains the value n. The address of the first beq instruction is $0 \times 0040003 \mathrm{c}$.

```
# Q5.asm
.data
A: .word 11, 9, 31, 2, 9, 1, 6, 10
B: .word 3, 7, 2, 12, 11, 41, 19, 35
n: .word 8
.text
main: la $s0, A # $s0 is the base address of array A
    la $s1, B # $s1 is the base address of array B
    la $t0, n # $t0 is the addr of n (size of array)
    \square# $s2 is the content of n
    beq $s2, $zero, End # Address: 0x0040003c
    addi $t8, $s2, -1
    sll $t8, $t8, 2
Loop: add $t0, $s0, $t8
    add $t1, $s1, $t8
    lw $t2, 0($t0)
    lw $t3, 0($t1)
    andi $t4, $t3, 3
    addi $t4, $t4, -3
    beq $t4, $zero, A1
    add $t2, $t2, $t3
    j A2
A1: addi $t2, $t2, 1
A2: sw $t2, 0($t0)
    addi $t8, $t8, -8
    slt $t7, $t8, $zero
    beq $t7, $zero, Loop
End: li $v0, 10 # system call code for exit
        syscall
```

a. Fill in the missing instruction (the fourth line in the program text) to store the value of n into \$s2. Do not use any pseudo-instruction.
b. Fill in the values of array A after the execution of the code.
c. Write an equivalent C code that does the same work. Use variables A and B for the arrays, and n for the size of the array. You do not need to declare A, B and n. [4 marks]

Give the instruction encoding in hexadecimal for the following 3 instructions:
d. sll $\$ \mathrm{t8}$, $\$ \mathrm{t8}, 2$ (Note: $\mathrm{rs}=0$)
e. j

A2
f. slt \$t7, \$t8, \$zero
6. [14 marks]

Refer to the same MIPS code in the previous question, except that now we focus only on a section of the code which is reproduced below:

	beq	\$s2,	\$zero, End	\# Inst1
	addi	\$t8,	\$s2, -1	\# Inst2
	sll	\$t8,	\$t8, 2	\# Inst3
Loop:	add	\$t0,	\$s0, \$t8	\# Inst4
	add	\$t1,	\$s1, \$t8	\# Inst5
	1w	\$t2,	0 (\$t0)	\# Inst6
	1w	\$t3,	0 (\$t1)	\# Inst7
	andi	\$t4,	\$t3, 3	\# Inst8
	addi	\$t4,	\$t4, -3	\# Inst9
	beq	\$t4,	\$zero, A1	\# Inst10
	add	\$t2,	\$t2, \$t3	\# Inst11
	j	A2		\# Inst12
A1:	addi	\$t2,	\$t2, 1	\# Inst13
A2 :	sw	\$t2,	0 (\$t0)	\# Inst14
	addi	\$t8,	\$t8, -8	\# Inst15
	slt	\$t7,	\$t8, \$zero	\# Inst16
	beq	\$t7,	\$zero, Loop	\# Inst17

Assuming a 5 -stage MIPS pipeline system with forwarding and early branching, that is, the branch decision is made at the ID stage. No branch prediction is made and no delayed branching is used. For the jump (j) instruction, the computation of the target address to jump to is done at the ID stage as well.

Assume also that the first beq instruction begins at cycle 1.
a. Suppose arrays A and B now each contains $\underline{200}$ positive integers. What is the minimum number and maximum number of instructions executed? (Consider only the above code segment from Inst1 to Inst17.)
[2 marks]
b. List out the instructions where some stall cycle(s) are inserted in executing that instruction in the pipeline. These include delay caused by data dependency and control hazard. You may write the instruction number InstX instead of writing out the instruction in full. [6 marks]
c. How many cycles does one iteration of the loop (from Inst1 to Inst17) take if the beq instruction at Inst10 branches to A1? You have to count until the WB stage of Inst17. [3 marks]
d. How many cycles does one iteration of the loop (from Inst1 to Inst17) take if the beq instruction at Inst10 does not branch to A1? You have to count until the WB stage of Inst17.
7. [14 marks]

Refer to the same MIPS code in the previous two questions:

```
    beq $s2, $zero, End # Inst1, Address: 0x0040003c
    addi $t8, $s2, -1 # Inst2
    sll $t8, $t8, 2 # Inst3
Loop: add $t0, $s0, $t8 # Inst4
    add $t1, $s1, $t8 # Inst5
    lw $t2, 0($t0) # Inst6
    lw $t3, 0($t1) # Inst7
    andi $t4, $t3, 3 # Inst8
    addi $t4, $t4, -3 # Inst9
    beq $t4, $zero, A1 # Inst10
    add $t2, $t2, $t3 # Inst11
    j A2 # Inst12
A1: addi $t2, $t2, 1 # Inst13
A2: sw $t2, 0($t0) # Inst14
    addi $t8, $t8, -8 # Inst15
    slt $t7, $t8, $zero # Inst16
    beq $t7, $zero, Loop # Inst17
End:
```

Assuming that arrays A and B now each contains 1024 positive integers. Given a directmapped data cache with 128 words in total, each block containing 4 words with each word being 4 bytes long, arrays A and B are stored starting at memory addresses $\underline{0 \times 10001000}$ and 0x1003F100 respectively.

The data cache is involved when memory is accessed (that is, when Iw and sw instructions are executed).
a. How many bits are there in the index field? In the byte offset field?
[2 marks]
b. Which index is $A[1023$] mapped to? Which index is $B[1023]$ mapped to?
[4 marks]
c. How many memory accesses in total are made for array A ? For array B ?
[2 marks]
d. What is the cache hit rate for array A ? For array B ?
[2 marks]
e. Given a direct-mapped instruction cache with 16 words in total, each block containing 2 instructions (words), and the first beq instruction is at memory address $0 \times 0040003 \mathrm{c}$. How many cache hits and misses are there in total during the execution of the code, assuming that the beq instruction at Inst10 always branches to A1? You may consider only the instructions in the given code segment, that is, Inst1 through Inst17.
[4 marks]
(The next few pages contain the MIPS Reference Data sheet, blank truth tables, K-maps and pipeline charts.)
(1)

Reference Data

BASIC INSTRUCTION FORMATS

FLOATING-POINT INSTRUCTION FORMATS

PSEUDOINSTRUCTION SET

NAME

Branch Less Than Branch Greater Than Branch Less Than or Equal Branch Greater Than or Equal Load Immediatc Move

MNEMONIC
OPERATION blt if(R[rs]<R[rt])PC== Label $\mathrm{bg}{ }^{\dagger} \quad \mathrm{if}(\mathrm{R}[\mathrm{rs}]>\mathrm{R}[\mathrm{rt}]) \mathrm{PC}=$ Label ble $\quad \operatorname{if}(\mathrm{R}[\mathrm{rs}]<=\mathrm{R}[\mathrm{rt}]) \mathrm{PC}=$ Labcl bge $\quad i f(R[r s]>=R[r t]) P C=$ Label li $\quad \mathrm{R}[\mathrm{rd}]=$ immediate move $\mathrm{R}[\mathrm{rd}]=\mathrm{R}[\mathrm{rs}]$
REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$vl	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporarics	No
\$50-\$s 7	16-23	Saved Temporaries	Yes
\$18-\$19	24-25	Temporaries	No
\$k0-\$k	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$ sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Copyright 2009 by Elscvicr, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.
(This page is for your rough work.)

(This page is for your rough work.)

(This page is for your rough work.)

	1	2		3	4	5	6	7	8	9	赵	$\begin{array}{\|l\|} \hline 1 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 4 \end{array}$	11	1	1	8	1	1	2	2	2	2	2		2		7	2	2	3 0
I1 beq																																	
$\begin{gathered} 12 \\ \text { addi } \\ \hline \end{gathered}$																																	
$\begin{aligned} & \hline 13 \\ & \text { sII } \end{aligned}$																																	
$\begin{gathered} 14 \\ \text { add } \\ \hline \end{gathered}$																																	
$\begin{gathered} 15 \\ \text { add } \end{gathered}$																																	
$\begin{aligned} & 16 \\ & \mathrm{lw} \\ & \hline \end{aligned}$																																	
$\begin{aligned} & 17 \\ & \text { Iw } \end{aligned}$																																	
$\begin{gathered} \hline 18 \\ \text { andi } \end{gathered}$																																	
$\begin{gathered} 19 \\ \text { addi } \end{gathered}$																																	
$\begin{gathered} 110 \\ \text { beq } \\ \text { A1 } \end{gathered}$																																	
$\begin{aligned} & \mathrm{I} 11 \\ & \text { add } \\ & \hline \end{aligned}$																																	
$\begin{aligned} & \hline 112 \\ & \text { J A2 } \\ & \hline \end{aligned}$																																	
$\begin{gathered} \hline 113 \\ \text { A1: } \\ \text { addi } \\ \hline \end{gathered}$																																	
$\begin{aligned} & \text { I14 } \\ & \text { A2: } \\ & \text { sw } \\ & \hline \end{aligned}$																																	
$\begin{gathered} \hline 15 \\ \text { addi } \\ \hline \end{gathered}$																																	
$\begin{gathered} \hline 116 \\ \text { slt } \end{gathered}$																																	
$\begin{aligned} & 117 \\ & \text { beq } \\ & \hline \end{aligned}$																																	

(This page is for your rough work.)

	1	2	3	4	5	6	7	8	9	$\begin{array}{\|l\|} \hline 1 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \end{array}$	1	1 3	1 4	1	1	1 7	1	1 9	2	2 1	2	2 3	2	2 5	2	2 7	2 8	2	3 0
$\begin{gathered} \hline \text { I1 } \\ \text { beq } \end{gathered}$																														
12 addi																														
$\begin{aligned} & \hline 13 \\ & \text { sII } \end{aligned}$																														
$\begin{gathered} 14 \\ \text { add } \end{gathered}$																														
$\begin{gathered} \text { I5 } \\ \text { add } \end{gathered}$																														
$\begin{aligned} & 16 \\ & \mathrm{Iw} \\ & \hline \end{aligned}$																														
17 Iw																														
18 andi																														
$\begin{gathered} \text { I9 } \\ \text { addi } \end{gathered}$																														
$\begin{gathered} \hline \text { I10 } \\ \text { beq } \\ \text { A1 } \end{gathered}$																														
$\begin{aligned} & \text { I11 } \\ & \text { add } \end{aligned}$																														
$\begin{gathered} \mathrm{I} 12 \\ \mathrm{~J} \text { A2 } \\ \hline \end{gathered}$																														
$\begin{gathered} \hline 113 \\ \text { A1: } \\ \text { addi } \\ \hline \end{gathered}$																														
I14 A2: sw																														
$\begin{gathered} \text { I15 } \\ \text { addi } \end{gathered}$																														
$\begin{gathered} \hline \text { I16 } \\ \text { slt } \end{gathered}$																														
$\begin{aligned} & \text { I17 } \\ & \text { beq } \\ & \hline \end{aligned}$																														

