CS2100: Computer Organisation
Lab \#7: Multiply-by-5 Circuit
(Week 9/10: 19-25 March 2024)
[This document is available on Canvas and course website https://www.comp.nus.edu.sg/~cs2100]

Name: \qquad Student No.: \qquad
Lab Group: \qquad

Objectives:

In this experiment, you will create a multiply-by- $\mathbf{5}$ circuit using a parallel adder.

IC chips:

1. One 74LS83 chip (4-bit adder)
2. One 74LS20 chip (DUAL 4-input NAND gates)

Figure 1a. Logic symbol ${ }^{\dagger}$ of 74LS83

Figure 1b. Pin configuration of 74LS83

Figure 2. 74LS20 (partial; only one gate is shown)

Reminder:

All inputs must be connected and not left blank, or marks will be deducted.

[^0]
Procedure:

1. You are to design a multiply-by-5 circuit given a 3-bit binary unsigned value $A B C$ as its input. The circuit generates a 5-bit binary number $S_{4} S_{3} S_{2} S_{1} S_{0}$, and an output V.
Since the circuit may not accommodate certain input value owing to the limited number of output bits, such an input value is deemed invalid, and the corresponding output will be don't-care values. The output V is used to indicate whether the input value is valid or not: 1 if the input value is valid, or 0 otherwise.
Fill in the truth table below. [7 marks]

Inputs				Outputs						
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{S}_{\mathbf{4}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{0}}$	\boldsymbol{V}		
0	0	0	0	0	0	0	0	1		
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

2. Complete the K-maps for $S_{4}, S_{3}, S_{2}, S_{1}$ and S_{0} below (you should not leave any cell blank), and write out the simplified SOP (sum-of-products) expression for each of them. [5 marks]
S_{4}

$S_{4}=$ \qquad
S_{3}

$S_{3}=$ \qquad
\boldsymbol{S}_{2}

$S_{2}=$ \qquad
S_{1}

$S_{1}=$ \qquad
\boldsymbol{S}_{0}

$S_{0}=$ \qquad
3. Now, implement the multiply-by-5 circuit using a 4-bit parallel adder (74LS83 chip). The 4-bit adder is used to generate the 5 -bit output $S_{4} S_{3} S_{2} S_{1} S_{0}$. You are not allowed to use any logic gate to generate the 5 -bit output.
In the following diagram, the outputs S_{3}, S_{2}, S_{1}, and S_{0} have been filled for you. You are not allowed to change them. You are to complete the output S_{4} and the inputs to the adder.
For the output V, you are to use a NAND gate to implement it. The 74LS20 chip is meant for this purpose
Draw the logic diagram for this circuit using the block diagram of 74LS83 (given in Figure 1a) and a NAND gate. [7 marks]

4. Show your circuit to your lab TA. [6 marks]

Marking Scheme: Report (19 marks), Circuit (6 marks); Total: 25 marks.
Your graded report will be returned to you at the next lab.

[^0]: ${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE St 91-1984 and IEC Publication 617-12.

