

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

ONLINE QUIZ
AY2019/2020 Semester 2

CS2100 — COMPUTER ORGANISATION

11 March 2020 Time Allowed: 1 hour 40 minutes

INSTRUCTIONS

1. This question paper contains FIVE (5) questions and comprises SIX (6) printed
pages. (Question 0 is on the Answer Sheet.)

2. Answer ALL questions within the space provided on the Answer Sheet.

3. Please type ALL your answers. If you are writing your answers, ensure that your
handwriting is legible, or marks may be deducted.

4. Submit only the Answer Sheet.

5. Maximum score of this quiz is 40 marks.

——— END OF INSTRUCTIONS ———

CS2100 Online Quiz

CS2100: Computer Organisation 2

SIMP Language

SIMP is a 16-bit general-purpose register architecture processor with the specification below.

Registers $rs, $rt, and $rd are placeholders for actual general-purpose registers $1, $2, ..., $6,

each holding a 16-bit value. const refers to a constant value and label refers to label in the

instruction corresponding to a specific line in the code. All constants are given as 4 bits 2’s

complement signed values. All labels will be converted into actual addresses using direct

addressing mode.

SIMP can only accommodate up to 128 addressable memory where each memory location holds

1 byte. The memory locations are numbered from 00000002 to 11111112. All memory locations

are given as unsigned binary values. Additionally, each word in this processor consists of 2 bytes

(16 bits) and every instruction is word-aligned.

We will use the following convention to simplify our discussion:

 Given a register $r, the content of the register $r is given as R[$r].

 Given a memory location addr, the content of the memory location at addr is given as M[addr].

 The notation A + B is used to denote the arithmetic + operation where the operands are A and B.

 The notation A - B is used to denote the arithmetic - operation where the operands are A and B.

 The notation A & B is used to denote the bitwise AND operation where the operands are A and B.

 The notation A ^ B is used to denote the bitwise XOR operation where the operands are A and B.

 The notation ~A is used to denote the bitwise NOT operation where the operand is A.

 PC is used for the special register holding the address of the current instruction.

Round brackets () are used to disambiguate order of operations.

Addressing Architecture: General-Purpose Register

Number of General-Purpose Registers: Six ($1, $2, ..., $6)

Special Registers (addressable):

These registers cannot be written

R[$0]= 0x0000 [i.e., all 0s]

R[$7]= 0xFFFF [i.e., all 1s]

Special Register (non-addressable): Program Counter ($pc)

Instruction Format: Fixed length 16-bit instructions

Arithmetic Instructions:

These are arithmetic operations and they must

come with 3 operands

 ADD $rd, $rs, $rt, const

o R[$rd] = R[$rs] + R[$rt] + const

 SUB $rd, $rs, $rt, const

o R[$rd] = (R[$rs] - R[$rt]) - const

Logical Instructions:

These are bitwise operations and they must come

with 3 operands

 AND $rd, $rs, $rt, const

o R[$rd] = R[$rs] & R[$rt] & const

 XOR $rd, $rs, $rt, const

o R[$rd] = R[$rs] ^ R[$rt] ^ const

Load/Store Instructions:

All addresses are byte addresses and they are

word-aligned

 LW $rt, $rs, const

o R[$rt] = M[R[$rs] + const]

 SW $rt, $rs, const

o M[R[$rs] + const] = R[$rt]

Branch Instruction:

This is a compare and branch instruction

 BEQ $rs, $rt, label

o Branch to label if R[$rs] == R[$rt]

o Otherwise, go to next instruction

CS2100 Online Quiz

CS2100: Computer Organisation 3

Question 1: Warmup Questions [8 marks]

Consider 4 statements written in C below with the following variable-to-register mapping:

x: $1 y: $2 z: $3

1) x = y * 2;
2) x = ~y;
3) x = y + z - 3;
4) x = y - 2;

Answer the following questions below. Each answer must be a single SIMP instruction.

a) How do we perform instruction (1) in SIMP? [2 marks]

b) How do we perform instruction (2) in SIMP? [2 marks]

c) How do we perform instruction (3) in SIMP? [2 marks]

d) How do we perform instruction (4) in SIMP? [2 marks]

Question 2: Compilation [8 marks]

Using the given SIMP instruction set, complete the SIMP equivalent of the C code below on the

answer sheet. Each array element is two bytes long. Ensure that your code is properly commented

to ease understanding.

sum = 0;
for (i=0; sum==0; i++) {
 switch (x[i]) {
 case 0: x[i] = -1;
 case -1: break;
 default: sum = x[i] + i + 5;
 }
}

Assume that you have the following variable-to-register mapping.

sum: $1 i: $2 base address of x: $3

Recap that in C, switch-case statement will continue execution from one case to the next unless

there is a break. In particular, for the code above, case 0 will “spill over” to case -1.

Additionally, any break statement within switch-case will exit the switch-case only. You are

already given the first 4 lines as well as the last 2 lines of the SIMP code. Your task is to fill in

the middle section. You are not to modify the given lines of code on the answer sheet.

CS2100 Online Quiz

CS2100: Computer Organisation 4

Question 3: Encoding [14 marks]

We can categorize the set of instructions in SIMP into three categories, with instruction formats

as shown below:

The following rules summarize how to encode a SIMP instruction to binary.

 Register is encoded as its number. For instance, $6 is encoded as 1102.

 Constant is encoded as 2’s complement signed value. For instance, -2 is encoded as

11102.

 Label is first converted into address and the address is encoded directly. For instance, to

branch to address 00110102, the label field is specified as 00110102.

 funct is not used in this encoding, it will always be 0 in question 3a. It is reserved for

future use (see question 3b).

 Opcode is encoded using the table below where the value is given as decimal, then

converted to binary. For instance, for LW instruction, the opcode is 5, the encoded value is

1012.

Instruction Opcode Instruction Opcode

ADD 1 LW 5

SUB 2 SW 6

AND 3 BEQ 7

XOR 4

a) Consider the following SIMP code which has been partially encoded. Assume that the first

instruction is at address 00000002. Fill in the missing hexadecimal encodings or the

instructions on the answer sheet.

Hexadecimal SIMP

0x402F [2 marks]

 L: ADD $2, $2, $2, 0 [2 marks]

0x241F [2 marks]

0xE08A [2 marks]

 BEQ $1, $1, L [2 marks]

 E:

CS2100 Online Quiz

CS2100: Computer Organisation 5

b) Suppose besides the 7 instructions given (ADD/SUB/AND/XOR in class A, LW/SW in class B

and BEQ in class C), you want to add more instructions into the SIMP instruction set. Assuming

the encoding space is completely utilized, including funct, and note that the opcodes of the

given 7 instructions should not be used for other instructions. What is the

(i) maximum total number of instructions (including the 7 given instructions)? [2 marks]

(ii) minimum total number of instructions (including the 7 given instructions)? [2 marks]

You do not need to show workings for the above.

Question 4: Datapath and Control [9 marks]

Study the dathapath of the processor below. It partially implements the fetch, decode, and ALU

stage for the SIMP language. Const 1 is to be determined in part (b). The ALU is special as it

can accept 3 operands instead of the usual 2. Operations in the ALU require all operands to have

16-bit value. The implementation is currently limited up to the store-to-memory stage.

The control signals are summarized in the table below.

Instruction Op2Select Op3Select MemRead MemWrite RegWrite

ADD 0 1 0 0 1

SUB 0 1 0 0 1

AND 0 1 0 0 1

XOR 0 1 0 0 1

LW 1 1 1 0 1

SW 1 1 0 1 0

BEQ 0 0 0 0 0

CS2100 Online Quiz

CS2100: Computer Organisation 6

Note that for the multiplexer, the input line is selected as follows:

Since the inputs to the ALU must be 16-bit values, we will need the component marked as Comp.

Additionally, for BEQ operation, the input to OP3 of ALU must be chosen from either label or

Const 1. Similarly, for LW and SW operation, the input to OP2 of ALU must be chosen from

either $rt or Const 1.

For BEQ, the operation performed by the ALU is subtraction (i.e., OP1 - OP2 - OP3). For LW

and SW, the operation performed by the ALU is addition (i.e., OP1 + OP2 + OP3).

Given the information above, answer the questions below.

a) What is the component marked as Comp? [1 mark]

b) What is the value of Const 1? Give your answer in hexadecimal. [1 mark]

Consider executing the instruction BEQ $4, $5, 54. Note that 54 is already the target address

and not a label anymore. The encoding for this instruction is: 0xF2B6 or 1111 0010 1011

01102.

Use the following convention in your answer:

 Given a register $r, the content of the register $r is given as R[$r].

 Given a memory location addr, the content of the memory location at addr is given as M[addr].

 The notation A + B is used to denote the arithmetic + operation where the operands are A and B.

 The notation A - B is used to denote the arithmetic - operation where the operands are A and B.

 The notation A & B is used to denote the bitwise AND operation where the operands are A and B.

 The notation A ^ B is used to denote the bitwise XOR operation where the operands are A and B.

 The notation ~A is used to denote the bitwise NOT operation where the operand is A.

 PC is used for the special register holding the address of the current instruction.

 Use decimal values for constants

c) Fill in the table on the answer sheet for the input/output value of each component in the

datapath of the processor given the control signal and encoding above. RR1 has been filled

for you. [7 marks]

RR1 RR2 WR OP1 OP2 OP3 addr MWD

$4

=== END OF PAPER ===

