NATIONAL UNIVERSITY OF SINGAPORE
 SCHOOL OF COMPUTING
 MID-TERM TEST
 AY2017/18 Semester 2
 CS2100 - COMPUTER ORGANISATION

13 March 2018
Time Allowed: $\mathbf{1}$ hour $\mathbf{3 0}$ minutes

INSTRUCTIONS

1. This question paper contains ELEVEN (11) questions (excluding the bonus question) and comprises EIGHT (8) printed pages.
2. Page 8 contains the MIPS Reference Data sheet.
3. An Answer Sheet, comprising TWO (2) printed page, is provided for you.
4. Write your Student Number and Tutorial Group Number on the Answer Sheet with a PEN.
5. Answer ALL questions within the space provided on the Answer Sheet.
6. You may write your answers in pencil (at least 2B).
7. Submit only the Answer Sheet at the end of the test. You may keep the question paper.
8. This is a CLOSED BOOK test. However, an A4 single-sheet double-sided reference sheet is allowed.
9. Maximum score of this test is $\mathbf{4 0}$ marks.
10. Calculators and computing devices such as laptops and PDAs are not allowed.

Bonus question:

0. [This bonus question is worth 1 mark. The mark of this question will only be added if the total mark scored is less than 40.]
The photo on the right shows Aaron playing the 'magic number' game in class. When did that happen?
A. In the first week of the semester.
B. In the second week of the semester.
C. In the third week of the semester.
D. This is fake news, it has never happened.

Questions 1 - 5: Each multiple-choice-question has only one correct answer. Write your answers in the boxes on the Answer Sheet. Two marks are awarded for each correct answer and no penalty for wrong answer.

1. What is the base x for this addition operation to hold: $(\mathbf{1 3 5})_{x}+(\mathbf{2 5})_{x}=(\mathbf{1 6 1})_{x}$?
A. 6
B. 7
C. 8
D. 9
E. 11
2. What is the content of $\boldsymbol{\$} \mathbf{t} \mathbf{2}$ after executing the following MIPS code?
```
lui $tO, 0xA0A0
ori $t0, $t0, 0x1234
addi $t1, $0, -8
xor $t2, $t0, $t1
```

A. 0×5 F5FEDC3
B. 0×5 F5FEDC8
C. 0x5F5FEDCC
D. 0xA0A0123C
E. None of the above.
3. Which of the following statement(s) regarding the "j" (jump) instruction in MIPS is/are TRUE?
i. It is possible that a particular "j" instruction can only jump backward to instruction earlier in the code.
ii. If the same " j " instruction is executed multiple times (e.g. in a loop), it is possible that it jumps to different instructions.
iii. If a "j" instruction fails to reach its target due to limitation of the immediate field, it is possible that we can construct a chain of multiple " j " instructions to reach the target.
A. Only (i)
B. Only (ii)
C. Only (i) and (iii)
D. Only (ii) and (iii)
E. All of (i), (ii) and (iii).

For questions 4 and 5:

An ISA has three types of instructions: Type A instructions have 4-bit opcode, type B instructions have 7-bit opcode, and type C instructions have 8-bit opcode. All three types of instructions exist and the encoding space is completely utilised.
4. What is the minimum total number of instructions?
A. 3
B. 16
C. 24
D. 28
E. None of the above.
5. What is the maximum total number of instructions?
A. 238
B. 240
C. 247
D. 252
E. None of the above.
6. Given the following hexadecimal value in the IEEE 754 single-precision floating-point number representation:

C4007000

What decimal value does it represent?
7. Assuming that \mathbf{x} is a positive integer, the following function returns 1 if \mathbf{x} is a certain type of values or it returns 0 otherwise.

```
int mystery(int x) {
    return !((x-1) & x);
}
```

(a) What does mystery (20) return?
(b) What does mystery(32) return?
(b) What kind of values must \mathbf{x} be for the function to return 1?
8. Write out the output of the following program.

```
#include <stdio.h>
typedef struct {
    int first, second;
} pair_t;
void g(int *, pair_t);
int main(void) {
    int arr[2] = { 11, 22 };
    pair_t pair = { 33, 44 };
    g(arr, pair);
    printf("%d %d %d\n", arr[0], pair.first, pair.second);
    return 0;
}
void g(int *arr, pair_t pair) {
    *arr = 55;
    pair.first = 66;
    pair.second = 77;
}
```

9. Write out the output of the following program.
```
#include <stdio.h>
int f(int *, int, char *);
int main(void) {
    int a, b, *p, *q;
    char c;
    a = 12;
    b = 50;
    c = 'C';
    p = &a;
    q = &b;
    *q = *q + 2;
    *p = f(&b, a, &c);
    printf("%d %d %c\n", a, b, c);
    return 0;
}
int f(int *p, int b, char *q) {
    int a = *p * 2 + b;
    *p = *p + 10;
    *q = *q + ('a' - 'A') + 1;
    return (a + *p);
}
```

10. Given the following datapath for the MIPS processor, answer the following question.

For this instruction

```
add $8, $9, $10
```

fill in the table in the Answer Sheet. Use the notation $\$ 8$ to represent register number 8 , [$\$ 8$] to represent the content of register number 8 and $\operatorname{Mem}(\mathrm{X})$ to represent the memory data at address X. You are to fill in the data at the datapath element regardless of whether it is used for this instruction. If the data is used, underline it; if the data is not used, do not underline it.
11. [Total: 11 marks]

The base address of an array A is stored in register $\mathbf{\$ s} \mathbf{0}$, and the number of elements in \$s1. Each array element is an integer that occupies 4 bytes. Assume that the initial contents of A are $\{\mathbf{3}, \mathbf{2}, \mathbf{5}, \mathbf{1}, \mathbf{8}\}$ (i.e. $A[0]$ is $3, A[1]$ is 2 , etc. and $\boldsymbol{\$ s} \mathbf{s}=5$). Study the following MIPS code.

```
add $t0, $s0, $zero # Address: 0x004000A4
add $t1, $s1, $s1
add $t1, $t1, $t1
add $t1, $s0, $t1
S1: slt $t2, $t0, $t1
    beq $t2, $zero, E1
    addi $t3, $t0, 4
S2: slt $t4, $t3, $t1
    beq $t4, $zero, E2
    lw $t5, 0($t0)
    lw $t6, 0($t3)
    add $t6, $t6, $t5
    sw $t6, 0($t3)
    addi $t3, $t3, 4
    j S2
E2: addi $t0, $t0, 4
    j S1
E1:
```

(a) Fill in the array elements after the execution of the above code.
[3 marks]
(b) Write an equivalent C code for the above code. You may use the variable n to denote the size (number of elements) of array A.
(c) Convert the first instruction (add \$t0, \$s0, \$zero) into its hexadecimal representation.
(d) Convert the last instruction (j S1) into its hexadecimal representation, assuming that the first instruction (add $\$ t 0, \$ s 0, \$ z e r o$) is at memory address 0x004000A4. [2 marks]

M1P $\boldsymbol{S}_{\text {Reference Data }}$

CORE INSTRUCTION SET NAME, MNEMONIC MAT OPR- $\begin{aligned} & \text { FOR } \\ & \text { MAT }\end{aligned}$

Add	add	R
$\mathrm{R}[\mathrm{rd}]=\mathrm{R}[\mathrm{rs}]+\mathrm{R}[\mathrm{rt}]$		

Add Immediate addi $I \quad \mathrm{R}[\mathrm{r} \mathrm{t}]=\mathrm{R}[\mathrm{rs}]+$ SignExtImm
Add Imm. Unsigned addia I $\mathrm{R}[\mathrm{rt}]=\mathrm{R}[\mathrm{rs}]+$ SignExtlmm
Add Unsigned addu $\quad \mathrm{R} \quad \mathrm{R}[\mathrm{rd}]=\mathrm{R}[\mathrm{rs}]+\mathrm{R}[\mathrm{rt}]$
And
And Immediate andi $1 \quad \mathrm{R}[\mathrm{rt}]=\mathrm{R}[\mathrm{rs}]$ \& ZeroExtlmm
Branch On Equal ber \quad I $\quad i f(R[r s]==R[r t])$
Branch On Not Equal bne \quad I $\quad \begin{aligned} & \mathrm{if}(\mathrm{R}[\mathrm{rs}]!=\mathrm{R}[\mathrm{rt}]) \\ & \mathrm{PC}=\mathrm{PC}+4+\mathrm{Branch} A d d r\end{aligned}$
Jump
Jump And Link jal J R[31]=PC+8; $\mathrm{PC}=\mathrm{Jump}$ Addr
Jump Register jr $\quad \mathrm{R} \quad \mathrm{PC}=\mathrm{R}[\mathrm{rs}]$
Load Byte Unsigned 1bu $R[r t]=\left\{24^{\prime} b 0, M[R[r s]\right.$

Load Halfword
Unsigned
Load Linked
Load Upper Imm.
Load Word
Nor
Or
Or Immediate
Sct Less Than
Set Less Than Imm.
Set Less Than Imm. Unsigned
Set Less Than Unsig, altu $^{\text {a }}$
Shift Left Logical s1
Shift Right Logical sr
Storc Byte
Store Conditional
Store Halfword
Store Word
Subtract
Subtract Unsigned
(1)

OPCODE / FUNCT (Hex)
(1) $0 / 20_{\text {hex }}$
$(1,2) \quad 8_{\text {hex }}$
(2) $9_{\text {hex }}$ $0 / 21_{\text {hex }}$
$0 / 24_{\text {hex }}$
(3) $\mathrm{c}_{\mathrm{hex}}$
(4) $4_{\text {hex }}$
(4) $5_{\text {hex }}$
(5) $2_{\text {hex }}$
(5) $3_{\text {hex }}$ $0 / 08_{\text {hex }}$
(2) $\quad 24_{h}$
(2) $25_{\text {hex }}$
(2.7) $30_{\text {hex }}$
$f_{\text {hex }}$
(2) $23_{\text {hex }}$ $0 / 27_{\text {hex }}$
$0 / 25_{\text {hex }}$
(3) $\mathrm{d}_{\text {hex }}$ $0 / 2 a_{\text {hex }}$
$a_{\text {hex }}$
$(2,6)$
(6) $0 / 2 b_{\text {hex }}$ $0 / 00_{\text {hex }}$ $0 / 02_{\text {hex }}$

ARITHMETIC CORE INSTRUCTION SET
OPCODE /FMT/FT / FUNCT (Hex)
NAME, MNEMONIC FOR-

OPERATION
(Hex)
$11 / 8 / 1 /-$
$\begin{array}{llll}\text { Branch On FP True bci-: } & \text { FI } & \text { if(}(\mathrm{FPcond}) \mathrm{PC}=\mathrm{PC}+4+\text { BranchAddr }(4) & 11 / 8 / 1 /- \\ & \end{array}$ $\begin{array}{lllll}\text { Branch On FP False tecs } & \text { FI } & \text { ift }!\mathrm{FPcond}) \mathrm{PC}=\mathrm{PC}+4-\mathrm{BranchAddr}(4) & 11 / 8 / 0 /-- \\ \text { Divide } & \text { div } & \text { R } & \mathrm{Lo}=\mathrm{R}[\mathrm{rs}] / \mathrm{R}[\mathrm{rt}] ; \mathrm{Hi}=\mathrm{R}[\mathrm{rs}] \% \mathrm{R}[\mathrm{rt}] & 0 /-/-/ l \mathrm{a}\end{array}$

FPAdd Single add.s FR F[fd $]=\mathrm{F}[\mathrm{fs}]+\mathrm{F}[\mathrm{ft}]$
FP Add add.d FR $\{\mathrm{F}[\mathrm{fd}], \mathrm{F}[\mathrm{fd}+1]\}=\{\mathrm{F}[\mathrm{fs}], \mathrm{F}[\mathrm{fs}+1]\}+$
Double add.d FR $\{\mathrm{F}[\mathrm{ft}] \mathrm{F}[\mathrm{ft}+\mathrm{l}]\}$
FP Compare Single cx.s* FR FPcond $=(\mathrm{F}[\mathrm{fs}]$ op $\mathrm{F}[\mathrm{ft}])$? $1: 0$
FP Compare \quad c.x. $\mathrm{a}^{*} \quad$ FR $\quad \mathrm{FP}$ cond $=(\{\mathrm{F}[\mathrm{fs}], \mathrm{F}[\mathrm{fs}+1]\}$ op
Double $\quad\{\mathrm{F}[\mathrm{ft}], \mathrm{F}[\mathrm{f}+1]\})$? $1: 0$

* (x is eq, 12 , or -c) (op is $==,<$, or $<=$) (y is $32,3 \mathrm{c}$, or 3 c)

FP Divide Single div.s FR $\quad \mathrm{F}[\mathrm{fd}]=\mathrm{F}[\mathrm{fs}] / \mathrm{F}[\mathrm{ft}]$
11/10/--/0
11/11/-/0
1 $1 / 10 /--/ y$
11/11/--/ $/$

FP Divide div.d $\mathrm{FR}\{\mathrm{F}[\mathrm{fd}], \mathrm{F}[\mathrm{fd}+1]\}=\{\mathrm{F}[\mathrm{fs}], \mathrm{F}[\mathrm{fs}+1]\} /$
Double $\{\mathrm{F}[\mathrm{ft}], \mathrm{F}[\mathrm{ft}+1]\}$
FP Multiply Single m:11.s FR $\mathrm{F}[\mathrm{fd}]=\mathrm{F}[\mathrm{fs}] * \mathrm{~F}[\mathrm{ft}]$
11/10/--/3
$11 / 11 /-/ 3$

FP Multiply : :
Double
FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft]
$\{\mathrm{F}[\mathrm{ft}], \mathrm{F}[\mathrm{ft}+1]\}$
T
FP Subtract
Double
Load FP Single
Load FP
Double
Move From Hi
lwel
wc1 $\quad \mathrm{F}[\mathrm{rt}]=\mathrm{M}[\mathrm{R}[\mathrm{rs}]+\mathrm{SignExt}[\mathrm{mm}]$
(2)
(2)
2) $35 /-/-/-$
$0 /-/-/ 10$
Move From Lo mfle $R \quad R[r d]=$ Lo $\quad 0 /-/-/ / 12$
Move From Control mfcc $\quad \mathrm{R} \quad \mathrm{R}[\mathrm{rd}]=\mathrm{CR}[\mathrm{rs}] \quad 10 / 0 / \omega / 0$
Multiply $\quad \mathrm{m}: 1 \mathrm{l}] \mathrm{t} \quad \mathrm{R} \quad\{\mathrm{Hi}, \mathrm{Lo}\}=\mathrm{R}[\mathrm{rs}] * \mathrm{R}[\mathrm{rt}]$
0/--/--/18
$\begin{array}{lllll}\text { Multiply Unsigned muitid } & \mathrm{R} & \{\mathrm{Hi}, \mathrm{Lo}\}=\mathrm{R}[\mathrm{rs}] * \mathrm{R}[\mathrm{rt}] & \text { (6) } 0 / \ldots /-/ 19 \\ \text { Shift Right Arith. } & \text { sra } & \mathrm{R} & \mathrm{R}[\mathrm{rd}]=\mathrm{R}[\mathrm{rt}] \geqslant \gg \text { shamt } & 0 /-/-\mathrm{c} / 3\end{array}$
Store FP Single swc: I \quad M $[\mathrm{R}[\mathrm{rs}]+$ SignExtInm $]=\mathrm{F}[\mathrm{rt}] \quad$ (2) $39 / \omega / \omega$
Store FP \quad sdc: $\quad 1 \quad \mathrm{M}[\mathrm{R}[\mathrm{rs}]+$ SignExtImm $]=\mathrm{F}[\mathrm{rt}]$; (2)
Double \quad sdc- $\quad 1 \quad \mathrm{M}[\mathrm{R}[\mathrm{rs}]+$ SignExtInm +4$]=\mathrm{F}[\mathrm{rt}+\mathrm{l}]$

FLOATING-POINT INSTRUCTION FORMATS

PSEUDOINSTRUCTION SET

NAME
Branch Less Than
Branch Greater Than
Branch Less Than or Equal
Branch Greater Than or Equal
Load Immediatc
Move
REGISTER NAME, NUMBER, USE, CALL CONVENTIO

NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$vl	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Tcmporarics	No
\$50-\$s?	16-23	Saved Temporaries	Yes
\$18-\$19	24-25	Temporaties	No
\$k0-\$kl	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

