
CS2100 MID-TERM TEST ANSWER SHEET AY2018/19 Semester 2

Please turn over…

NOTE: Write your particulars above legibly using PEN.

 [2 marks/MCQ]

1. C 2. A 3. C 4. E 5. B 6. D

7. [8 marks]

C Code MIPS Code

int main(void) {

 i = 0;

 A = ‘A’;

 a = ‘a’;

 Z = ‘Z’;

 [addi $s1, $zero, 0]

 [addi $s3, $zero, 65]

 [addi $s4, $zero, 97]

 [addi $s5, $zero, 90]

 do { loop:

 if(str[i] >= ‘A’

 && str[i] <= ‘Z’) {

 add $s7, $s0 , $s1

 lb $t2, 0($s7)

 slt $t1, $t2 , $s3

 bne $t1, $zero, else

 [slt $t1, $s5 , $t2]

 [bne $t1, $zero, else]

 func(str + i); j func

ret:

 } else:

[i++]; addi $s1, $s1, 1

 } while(str[i-1] != 0); [bne $t2, $zero, loop]

 return 0;

}

quit: j exit

// Code omitted # Code omitted

void func(char* str) { func:

[*str = *str + ‘a’ – ‘A’];

 return;

 lb $t8, 0($s7)

 addi $t8, $t8, 97

 addi $t8, $t8, -65

 sb $t8, 0($s7)

 j ret

}

// Code omitted # Code omitted

// End of Program exit:

TOTAL SCORE

/ 40 A 0 1

TUTORIAL GROUP:

STUDENT NO.:

 - 2 of 5 -

8. [2 marks]

9. [2 marks]

10. [CHALLENGING] [2 marks]

11. [6 marks]

12. [6 marks]

Registers File ALU Data Memory

RR1 RR2 WR WD Opr1 Opr2 Address Write Data

$8 $0
$31

/
$ra

M[R[$8]-R[$0]]
/

M[R[$8]]
R[$8]

R[$0]
/
0

R[$8]-R[$0]
/

R[$8]

R[$0]
/
0

13. [CHALLENGING] [2 marks]

REFLECTIONS

Any thought about the module?
Share it in the thought bubble on the right.
This will not be graded! ☺

 cs2100 is easy!

 0x15200003

 𝟐𝟐𝟔 − 𝟗 instructions [67,108,855 instructions]

 -5.84375

 sw $zero, 0($zero) [or sw X, 0($zero)]

I am so sorry for the

mistake in question 7.

I will thoroughly

check the question for

final exam.

-- Adi

I want to say…

 - 3 of 5 -

WORKINGS:

1. By trial and error:

• 328 = 2610 = 2 × 13
• 329 = 2910 = 1 × 29 (this is a prime number, not a product of two primes)

• 3211 = 3510 = 5 × 7

NOTE: prime is still prime in any base. Note, 1 is NOT prime!
2. By tracing the value of $t0, $t1, and $t2 line by line

• lui $t0, 0xAAAA

• srl $t0, $t0, 16

• lui $t0, 0xA0A0

• ori $t1, $zero, 0x5555

• and $t2, $t1 , $t0

For Question 3-4, first compute the required number of bits:
- Registers: there are 6 registers, therefore 3-bits
- Addresses: there are 64 addresses, therefore 6-bits
- For Class A:

o 3 registers: 9-bits
o Opcode: 16-9 = 7-bits

- For Class B:
o 1 address: 6-bits
o 2 registers: 6-bits
o Opcode: 16-6-6 = 4-bits

Draw a possible bit arrangement

Class A

 Class B

3. Maximum is achieved by maximising Class A instruction (hence, minimising Class B):

• Assign only 1 Opcode_1 to Class B: for instance, 0000 is for Class B

• Assign the rest to Class A:
▪ Opcode1: 0001 to 1111: 24 − 1 = 15
▪ Opcode2: 23 = 8
▪ Total: 15 × 8 = 120

• Sum for both classes: 120 + 1 = 121
4. Minimum is achieved by maximising Class B instruction (hence, minimising class A):

• Assign only 1 Opcode_1 to Class A: for instance, 0000 is for Class A
▪ Opcode1: 0000 only: 1
▪ Opcode2: 23 = 8
▪ Total: 1 × 8 = 8

• Assign the rest to Class B:
▪ Opcode1: 0001 to 1111: 24 − 1 = 15
▪ Total: 15

• Sum for both classes: 8 + 15 = 23

$t0 $t1 $t2
0xAAAA0000 - -
0x0000AAAA - -
0xA0A00000 - -
0xA0A00000 0x00005555 -
0xA0A00000 0x00005555 0x00000000

Opcode1

Opcode1

4-bits

Reg_1

3-bits

Reg_1

Reg_2

3-bits

Reg_2

4-bits 3-bits 3-bits

3-bits

Address

6-bits

Opcode2 Reg_3

3-bits

 - 4 of 5 -

5. NOTE: Function call is pass-by-value. Therefore, the array numer inside rational is copied.
6. NOTE: On the other hand, we are passing pointers directly here. Hence, pass-by-reference.

7. IDEA:

▪ First 4 MIPS code: Refer to the ASCII table for the decimal value.
▪ Next 2 MIPS code: Perform slt followed by either bne or beq similar to the two lines above

this.
o str[i] <= ‘Z’
o $t2 <= $s5
o !($s5 < $t2)
o ($s5 < $t2) == 0
o slt $t1, $s5, $t2 ;; bne $t1, $zero, else

▪ First 1 C code: This is simply $s1++ (or i++) after mapping.
▪ Next 1 MIPS code: Simply bne $t2, $zero, loop (cannot use j loop here as j is

unconditional). NOTE: since there is an i++ before, str[i-1] is exactly $t2.
▪ Last 1 C code: Start by translating the 4 MIPS code

o lb $t8, 0($s7) => $t8 = *str
o addi $t8, $t8, 97 => $t8 = $t8 + ‘a’ => $t8 = *str + ‘a’
o addi $t8, $t8, -65 => $t8 = $t8 – ‘A’ => $t8 = *str + ‘a’ – ‘A’
o sb $t8, 0($s7) => *str = $t8 => *str = *str + ‘a’ – ‘A’

8. TRACE: The program basically converts uppercase to lowercase: “cs2100 is easy!”
9. STEPS:

• Compute immediate value: bne $t1, $zero, 3

• Compute registers value: bne $9, $0, 3
▪ opcode: 000101
▪ rs: 01001
▪ rt: 00000
▪ immediate: 0000 0000 0000 0011

• Binary: 0001 0101 0010 0000 0000 0000 0000 0011

• Hexadecimal: 1 5 2 0 0 0 0 3

• Answer: 0x15200003
10. STEPS:

• Compute maximum jump using j instruction
▪ j func: between ret label and func label, need to be within 256MB boundary
▪ j exit: between top #Code omitted and exit label, need to be within 256MB

boundary
▪ j ret : between bottom #Code omitted and ret label, need to be within 256 MB

boundary
▪ Due to overlap between these j instructions, it implies between ret label and exit label

are within 256MB boundary

• 256MB boundaries contain 226 instructions.

• Subtract 8 instructions already in the region.

• Subtract 1 since we must jump to exit label, which means there must be one instruction
there at the exit label. Note that the label is outside the #Code omitted region.

• Total: 226 − 9

 - 5 of 5 -

11. STEPS:

• Convert to binary: 1100 0000 1011 1011 0000 0000 0000 0000

• Split into region:
▪ Sign: 1 (negative)
▪ Exponent: 10000001
o Convert to decimal: 129
o Excess-127: 129 = 127+2 => 2

▪ Mantissa: 01110110000000000000000
o Normalize: 1.0111011 × 22
o Remove exponent: 101.11011

o Convert to decimal: 5 + 2−1 + 2−2 + 2−4 + 2−5
o Sum: 5 + 0.5 + 0.25 + 0.0625 + 0.03125 = 5.84375

• Answer: -5.8435

12. TRACE: Note that the Control signal is different. Be careful with which values are selected in
multiplexer as well as the behaviour of each component (e.g., Register File and Data Memory).
WR is the first 5 bits, so it will be $31 (note the use of $ sign to indicate register).

13. NOTE: Need to ensure that ALU operation results in ALUresult = 0 to force is0? = 1. This
can be guaranteed by having sw $??, 0($zero). Note that $?? can be any register.
This is a branch, since the PCSrc is set to 1, but it branch to the next instruction.

