
AY2023/24 Semester 2 - 1 of 4 - CS2100 Tutorial #4 Answers

CS2100 Computer Organization
Tutorial #4: ISA

19 – 23 February 2024
ANSWERS

1. Given below are the contents of some registers and memory locations, where mem(A) refers to

the data word stored in the memory location at address A:

 $s0 = 100 mem (100) = 1000
 $s1 = 160 mem (160) = 1600
 $s2 = 200 mem (200) = 2000
 $s3 = 240 mem (240) = 2400
 $s4 = 300 mem (300) = 3000

 $t0 = 10000 mem (10000) = 100
 $t1 = 15000 mem (15000) = 150
 $t2 = 20000 mem (20000) = 200
 $t3 = 25000 mem (25000) = 250
 $t4 = 30000 mem (30000) = 300

 For each of the MIPS instructions below, ‘op’ is an unknown opcode, which is not of our concern
here. For each of the data operands in the instruction, if the format is legal, give its memory
address (if applicable) and the content inside. Note that $s0, …, $s4, $t1, …, $t4 are symbolic
register names, $zero is register 0 with content zero inside, and only the three addressing modes
(register, immediate, and displacement) mentioned in class are considered as legal.

 Note: QTSpim which you use in lab is a simulator and it may accept formats that are illegal in
MIPS, eg. lw $t1, $t2. We accept only the right MIPS instruction formats covered in class.

 (a) op $t1, $t2 (b) op $s2, 100($zero) (c) op $t4, 40($s2)

 (d) op $s3, 200($zero) (e) op $t3, $zero($t1) (f) op $s1, 140($s1)

 The answers for (a) have been done for you.

 Operand Target Memory Address Content

(a)
$t1
$t2

Not applicable
Not applicable

15000
20000

(b)
$s2
100($zero)

Not applicable
100

200
1000

(c)
$t4
40($s2)

Not applicable
240

30000
2400

(d)
$s3
200($zero)

Not applicable
200

240
2000

(e)
$t3
$zero($t1)

Not applicable
Illegal

25000
Illegal

(f)
$s1
140($s1)

Not applicable
300

160
3000

AY2023/24 Semester 2 - 2 of 4 - CS2100 Tutorial #4 Answers

For question 2 below, we are exploring four different types of ISAs. MIPS belongs to the Register-
Register style.

2. You are tasked to design a dedicated 16-bit processor to perform simple addition and would like
to evaluate the design using the four different instruction set architecture (ISA) styles. For each
of these architectures, the corresponding data movement and arithmetic operations are shown
below. Note that the operands for the instructions are annotated with either @ for address, or
$ for register.

ISA Instructions Explanation

Stack push @src
pop @dest
add

Load value in @src onto top of stack.

Transfer value at top of stack to @dest.

Remove top two values in stack, add
them, and load the sum onto top of stack.

Accumulator load @src
add @src

store @dest

Load value in @src into accumulator.

Add value in @src and value in
accumulator, and put sum back into
accumulator.
Store the value in accumulator into
@dest.

Memory-Memory add @dest, @src1, @src2 Add values in @src1 and @src2, and put
the sum into @dest.

Register-Register load $reg, @src
add $dest, $src1, $src2

store $reg, @dest

Load value in @src into $reg.

Add values in $src1 and $src2, and put
sum into $dest.

Store value in $reg into @dest.

Consider the following three C statements with integer variables a0, a1 and a2:

 a0 = a1 + a2;

 a1 = a0 + a2;

 a2 = a0 + a1;

For each of the four architectural styles above, write the assembly code corresponding to the
above C code. Assume that the values of a0, a1, a2 are pre-assigned to memory in addresses
@a0, @a1, @a2 respectively. The registers are denoted by $r0 to $r4. First part of each code is
given.

Stack Accumulator Memory-Memory Register-Register

push @a1
push @a2
add
pop @a0
push @a0
push @a2
add
pop @a1
push @a0
push @a1
add
pop @a2

load @a1
add @a2
store @a0
add @a2
store @a1
add @a0
store @a2

add @a0, @a1, @a2
add @a1, @a0, @a2
add @a2, @a0, @a1

load $r1, @a1
load $r2, @a2
add $r0, $r1, $r2
store $r0, @a0
add $r1, $r0, $r2
store $r1, @a1
add $r2, $r0, $r1
store $r2, @a2

AY2023/24 Semester 2 - 3 of 4 - CS2100 Tutorial #4 Answers

3. This is a follow up on question 2. We studied the assembly code generated for four different
storage architectures, namely stack, accumulator, memory-memory and register-register. For
your reference, the code fragment corresponds to the following high-level statements:

 a0 = a1 + a2;

 a1 = a0 + a2;

 a2 = a0 + a1;

(a) Let us study the instruction encoding for this question. Assume that 3 bits will be used for

the opcode, and minimal space will be used to represent 128 bytes of addressable memory.
Moreover, for the Register-Register ISA, there are only 5 general-purpose registers available.
Assume also a fixed-length instruction format, and that the memory is byte-addressable.

 For each of the four architectures, what is the number of bits required for the longest
instruction? Hence, what is the size, in number of bytes, of the instructions?

 Partial answers are given below. Discuss.

Number of bits for
longest instruction

Number of bytes

Stack 10 2

Accumulator 10 2

Memory-Memory 24 4

Register-Register 13 2

• 3 bits needed to represent 5 registers;

• For a memory space of 128 bytes, 7 bits needed for a byte-addressable machine.

• A common question is why 4 bytes instead of 3 bytes for the 24-bit instruction? It
could have been 3, but 4 bytes would permit a simpler design to avoid alignment
problem (at the expense of more space). An instruction is usually fetched in a word,
and a word usually contains 2, 4, or 8 bytes. It is uncommon to have a word that
contains 3 bytes.

Stack Accumulator Memory-Memory Register-Register

push @src 10

pop @dest 10

add 3

load @src 10

add @src 10

store @dest 10

add @dest, @src1, @src2

 24

load $reg, @src 13

add $dest1,$src1,$src2 12

store $reg, @dest 13

The longest instruction for each of the four ISAs from left to right are 10, 10, 24 and 13 bits
respectively.

To compute the instruction code size for a 16-bit processor, we consider the minimum
number of 16-bit words necessary to encompass the bits. The sizes are therefore 2, 2, 4 and
2 bytes respectively. This information will be needed for the next question.

(b) What is the size (in number of bytes) of the code in question 2 for each of the four
architectures? Which architecture is most efficient in terms of code size for this code?

AY2023/24 Semester 2 - 4 of 4 - CS2100 Tutorial #4 Answers

 Code size = number of instructions size of each instruction

 Stack: 12 2 = 24 bytes

 Accumulator: 7 2 = 14 bytes

 Memory-Memory: 3 4 = 12 bytes

 Register-Register: 8 2 = 16 bytes

 Hence Memory-Memory is the most efficient in terms of code size for this code.

4. [Past-year’s exam question]

An ISA has 16-bit instructions and 5-bit addresses. There are two classes of instructions: class A
instructions have one address, while class B instructions have two addresses. Both classes exist
and the encoding space for opcode is completely utilized.

(a) What is the minimum total number of instructions?

(b) What is the maximum total number of instructions?

 Answers
 Class A: ppppppppppp xxxxx
 Class B: qqqqqq xxxxx yyyyy
 ‘ppppppppppp’ and ‘qqqqqq’ are opcodes, ‘xxxxx’ and ‘yyyyy’ are addresses.

 To obtain the minimum total number of instructions, we give class B (26 – 1) opcodes,

leaving one 6-bit opcode as the prefix for class A 11-bit opcodes.
 Hence class A has 25 opcodes. Total = (26 – 1) + (25) = 63 + 32 = 95.

 To obtain the maximum total number of instructions, we give class B only 1 opcode, leaving

(26 – 1) prefixes for class B opcodes. Hence, class B has (26 – 1)×(25) = 63×32 = 2016
opcodes. Hence a total of 2017 instructions.

