CS2100 Computer Organisation
 Tutorial \#9: Sequential Circuits

(Week 11: 1 - 5 April 2024)

Discussion Questions:

D1. The state table on the right describes the state transition of a circuit with 4 states A, B, C and D, an input x, and an output z. For example, if the circuit is in state A and its input x is 0 , then it moves into state C and generates the output 0 for z.
(a) Complete the state diagram below. The label of the arc indicates input/output, hence $1 / 1$ means $x=1$ and $z=1$.

	x	
	0	1
A	$C / 0$	$A / 1$
B	$D / 1$	$B / 0$
C	$B / 1$	$D / 0$
D	$C / 0$	$D / 0$

x / z

(b) Assuming that the circuit starts in state A, find the output sequence and state sequence for the input sequence $x=100010$ (read from left to right). ($x=100010$ means that initially x is 1 , then in the next clock x is 0 , and so on.)

D2. Match the following state diagrams to the 4 flip-flops: JK flip-flop, D flip-flop, $R S$ flip-flop, and T flipflop. Don't-care value is indicated by " x ".
(a)

(b)

1
(b)

(d)

Tutorial Questions

1. A four-state sequential circuit below consists of a \boldsymbol{T} flip-flop and a \boldsymbol{D} flip-flop. Analyze the circuit.

(a) Complete the state table and hence draw the state diagram.
(b) Assuming that the circuit is initially at state 0 , what is the final state and the outputs generated after 3 clock cycles?

A state is called a sink if once the circuit enters this state, it never moves out of that state.
(c) How many sinks are there for this circuit?
(d) Which is likely to be an unused state in this circuit?
/p

Present state		Output		Flip-flop inputs		Next state	
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{p}	TA	$\boldsymbol{D B}$	$\boldsymbol{A +}$	$\boldsymbol{B}+$	
0	0						
0	1						
1	0						
1	1						

2. [AY2021/22 Semester 2 Exam]

A sequential circuit with 6 states: state $1\left(A B C=001_{2}\right)$ through state $6\left(A B C=110_{2}\right)$ is implemented using three $J K$ flip-flops as shown below.

(a) Complete the state diagram below. One of the transitions has been drawn for you.

1
2

3
(b) A circuit is self-correcting if for some reason the circuit enters into any unused (invalid) state, it is able to transit to a valid state after a finite number of transitions.
Is this circuit self-correcting? Explain.
3. [AY2021/22 Semester 2 Exam]

Redesign the circuit in question 2 by using only \boldsymbol{T} flip-flops. You do not have to follow where the unused states transit to in question 2. Write out the flip-flop input functions $T A, T B$ and $T C$ so that your new design can be implemented with the fewest number of logic gates other than the flip-flops.
4. [AY2018/19 Semester 2 exam]

A sequential circuit goes through the following states, whose state values are shown in decimal:

The states are represented by 4-bit values $A B C D$. Implement the sequential circuit using a D flip-flop for A, T flip-flops for B and C, and a $J K$ flip-flop for D.
(a) Write out the simplified SOP expressions for all the flip-flop inputs.
(b) Implement your circuit according to your simplified SOP expressions obtained in part (a). Complete the given state diagram, by indicating the next state for each of the five unused states.
(c) Is your circuit self-correcting? Why?

