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[Handout for L10P2]  

Modeling your way out of complexity: other useful models 

A model is anything used in any way to represent anything else. For example, a class diagram is 

a model that represents a software design and is drawn using the UML modeling notation. 

Models are a great help in providing a simpler view of a much more complex entity because a 

model often captures only some aspects of the entity while abstracting away other aspects. For 

example, a class diagram captures the class structure of the software design but not the runtime 

behavior. Therefore, we often have to create multiple models of the same entity if we are to 

understand all relevant aspects of it. For example, in addition to the class diagram, we might 

create a number of sequence diagrams to capture various interesting interaction scenarios the 

software undergoes. In software development, models are useful in several ways: 

a) To analyze a complex entity related to software development. For example, we can 
build models of the problem domain (i.e. the environment in which our software is 
expected to solve a problem) to help us understand the problem we are trying to solve. 
Such models are called domain models. Similarly, we can build models of the software 
solution we plan to build to figure out how to build it. An architecture diagram is such a 
model. 

b) To communicate information among stakeholders.  We can use models as a visual aid 
in discussions and documentations. To give a few examples, an architect can use an 
architecture diagram to explain the high-level design of our software to developers; a 
business analyst can use a use case diagram to explain to the customer the functionality 
of the system; we can reverse-engineer a class diagram from the code to explain to a 
new developer the design of a component. 

c) As a blueprint for creating software. We can use models as instructions to build 
software. Model-driven development (MDD), also called Model-driven engineering, is an 
approach to software development that strives to exploits models in this fashion. MDD 
uses models as primary engineering artifacts when developing software. That is, we first 
create the system in the form of models. After that, we convert models to code using 
code-generation techniques (usually, automated or semi-automated, but can even be 
manual translation from model to code). MDD requires the use of a very expressive 
modeling notation (graphical or otherwise), often specific to a given problem domain. It 
also requires sophisticated tools to generate code from models and maintain the link 
between models and the code. One advantage of MDD is that we can use the same model 
to create software for different platforms and different languages. MDD has a lot of 
promise, but it is still an emerging technology.  

In this handout, we look at some more models we can use in software development. 

Modeling workflow 
Workflows define the flow or a connected sequence of steps in which a process or a set of tasks 

is executed.   Understanding the workflow of the problem domain is important if the problem 

we are trying to solve is connected to the workflow. 

We can use UML Activity diagram (AD) to describe a workflow.  An activity diagram (AD) 

consists of a sequence of actions and control flows. An action is a single step in an activity. It is 

shown as a rectangle with rounded edges. A control flow shows the flow of control from one 

action to the next. It is shown by drawing a line with an arrow-head to show the direction of the 

flow. 
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Get on the 
bus

Ride the 
bus

Get off the 
bus

UML Notation :  Activity diagram (partial)

Action 1

Action 2

start

end

flow/
edge

action

Activity: A passenger rides on a bus

 
Branch nodes and merge nodes have the same notation: a diamond shape. They are used to show 

alternative (not parallel) paths through the AD. The control flows coming away from a Branch 

node will have guard conditions which will allow control to flow if the guard condition is 

satisfied. Therefore, a guard is a boolean condition that should be true for execution to take a 

specific path.  

Activity: product purchase

check 
product

buy

UML Notation :  alternative paths in ADs

merge node (denotes the 
end of alternative paths)

[Customer likes 
product]

[else]
Action 1

[condition 1] [condition 2]

Action 1

branch node (denotes  the 
start of alternative paths)

guard 

 
Forks and joins have the same notation: a bar. They indicate the start and end of concurrent 

flows of control. The following diagram shows an example of their use. For join, execution along 

all incoming control flows should be complete before the execution starts on the outgoing 

control flow. 

Activity: online catalog browsing

log in  

Record 
browsing habits

UML Notation :  parallel paths in ADs

Fork (denotes the start of parallel 
paths - many outgoing edges)

Product 
browsing

log out  

Action 1 Action 1

Join (denotes the end 
of parallel paths –

many incoming edges)
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Here is the AD for the Minesweeper. 

Deduce cell

Cell marked

[Clear]

Cell cleared

[Mark]

Lose
[Mined][Mine-free]

[More cells 
to deduce]

[All cells 
deduced]Win

(Game over)

[Mined][Mine-free]

(Game over)

(Start game)

 
Here is the AD for a game for a ‘snakes and ladders’ game. 

Each players puts a 
piece on the 

starting position

Current player throws die

[100th square

reached?]

[else]

Move piece

C
h

an
ge

 t
u

rn

Activity: snakes and ladders game

Decide the 
order of players

 
We use the rake symbol (in the “Move piece” action above) to show that an action is described in 

another subsidiary activity diagram elsewhere. That diagram is given below. 

Move piece to 
snake tail

[else]

[snake head]

Move forward 
fv squares

Move piece to 
ladder top

[ladder foot]

Activity: Move piece

[else]

fv = face value 
of the die

 
Note : Only essential elements of ADs are covered in this handout. 

Modeling objects in the problem domains 
Previously, we used UML class diagrams to model the structure of an OO solution. We can use 

class diagrams to model objects in the problem domain (i.e. to model how objects actually 

interact in the real world, before we emulate them in our solution). When used to model the 
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problem domain, we call such class diagrams conceptual class diagrams or OO domain models. 

Usually, we don’t show operations or navigability on OO domain models. As an example, given 

below is an OO domain model of a snakes and ladders game. 

Description: Snakes and ladders game is played by two or more players using a board 

and a die. The board has 100 squares marked 1 to 100. Each player owns one piece. 

Players take turns to throw the die and advance their piece by the number of squares 

they earned from the die throw. The board has a number of snakes. If a player’s piece 

lands on a square with a snake head, the piece is automatically moved to the square 

containing the snake’s tail. Similarly, a piece can automatically move from a ladder foot 

to the ladder top. The player whose piece is the first to reach the 100th square wins. 

Snakes&LaddersGame

Player

plays

Piece

Board

Square

Turn

number

owns

p
la

ye
d

 o
n

100

takes

is
 o

n

2..*

1

*

Snake

ta
il 

in

1

1

*has 

Die

FaceValue

dieValue

h
ea

d
 in

1

moves piece from

moves piece to

1

1

 

The above OO domain model omits the ladder class for simplicity. It can be included in a 

similar fashion to the Snake class. 

Note that OO domain models do not contain solutions-specific classes (i.e. classes that are used 

in the solution domain but do not exist in the problem domain). For example, a class called 

DatabaseConnection could appear in a class diagram but not usually in an OO domain model 

because DatabaseConnection is something related to a software solution but not an entity in the 

problem domain. 

Also note an OO domain model, just like a class diagram, represents the class structure of the 

problem domain and not their behavior. To show behavior we should use other diagrams such 

as sequence diagrams. 

Domain model notation is similar to class diagram notation. However, classes in domain 

models do not have a compartment for methods. It is also common to omit navigability from 

domain models. 

Other UML models 
So far we covered following UML models: Class diagrams (including OO domain models), object 

diagrams, activity diagrams, use case diagrams, and sequence diagrams. As shown by the 

domain model of UML diagrams given below, there are eight other UML diagrams: State 
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Machine Diagrams, Component diagrams, Composite Structure diagrams, Deployment diagrams, 

Package diagrams, Communication diagrams, Interaction overview diagrams, and Timing 

diagrams.  

 

A brief overview of those eight are given below [some diagrams adapted from the excellent 

book UML Distilled (3e) by Martin Fowler]. These are given here for completeness sake and are 

not examinable. 

State Machine Diagrams model state-dependent behavior. 

Consider how a CD player responds when the “eject CD” button is pushed:  

 If the CD tray is already open, it does nothing. 

 If the CD tray is already in the process of opening (opened half-way), it continues to 

open the CD tray. 

 If the CD tray is closed and the CD is being played, it stops playing and opens the CD tray. 

 If the CD tray is closed and CD is not being played, it simply opens the CD tray. 

 If the CD tray is already in the process of closing (closed half-way), it waits until the CD 

tray is fully closed and opens it immediately afterwards. 

What this means is the CD player’s response to pushing the “eject CD” button depends on what it 

was doing at the time of the event. More generally, the CD player’s response to event received 

depends on its internal state. We call such behaviour state-dependent behavior.  

Often, state-dependent behaviour displayed by an object in a system is simple enough that we 

need not pay extra attention to it; we think of such behaviour as simple ‘conditional’ behaviour 

such as ‘if x>y, then x=x-y’. Occasionally we encounter objects exhibiting state-dependent 

behaviour that is complex enough to capture into a separate model. We can use UML state 

machine diagrams (SMD for short, sometimes also called ‘state charts’, ‘state diagrams’ or ‘state 

machines’) to model such state-dependent behaviour.  

An SMD views the life-cycle of an object as consisting of a finite number of states where each 

state displays a unique behaviour pattern.  An SMD captures information such as the states an 

object can be in, during its lifetime, and how the object responds to various events while in each 

state and how the object transits from one state to another. As we have seen in the earlier 
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sections in this chapter, sequence diagrams capture one scenario at a time. In contrast, SMDs 

capture the object’s behaviour over its full life cycle. Given below is an example SMD for the 

Minesweeper game. More details on SMDs can be found in the appendix of this handout. 

entry/ start timer

exit/ stop timer

PRE_GAME

LOST

READY
new

WON

deduce

deduce
deduce

[incorrect deduction]

[incorrect 
deduction][correct 

deduction]

[correct deduction && 
no more cells to deduce]

deduce [correct deduction && 
more cells to deduce]

IN_PLAY/start timer

/stop timer

 

Timing diagrams focus is on timing constraints. 
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Deployment diagrams show a system's physical layout, revealing which pieces of software run 

on which pieces of hardware.  

 

A component diagram is used to show how a system is divided into components and how they 

are connected to each other through interfaces.  
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A package diagram shows packages and their dependencies. A package is a grouping construct 

for grouping UML elements (classes, use cases, etc.).  

 

Interaction overview diagrams are a combination of activity diagrams and sequence diagrams.  
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A composite structure diagram hierarchically decomposes a class into its internal structure.  

 

Communication diagrams are like sequence diagrams but emphasize the data links between 

the various participants in the interaction rather than the sequence of interactions.  
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Worked examples 

[Q1] 
Given below is the high-level game logic of the Minesweeper, drawn from the point of view of 
the player. 

Deduce cell

Cell marked

[Clear]

Cell cleared

[Mark]

Lose
[Mined][Mine-free]

[More cells 
to deduce]

[All cells 
deduced]Win

(Game over)

[Mined][Mine-free]

(Game over)

(Start game)

 
Incorporate the following new features to the above AD. 
(a) timing 

Description: The game keeps track of the total time spent on a game. The counting starts from 

the moment the first cell is cleared/marked and stops when the game is won or lost. Time 

elapsed is shown to the player after every mark/clear operation. 

(b) standing_ground 

Description: At the beginning of the game, the player chooses five cells to be revealed without 

penalty. This is done one cell at a time. If the cell so selected is mined, it will be marked 

automatically. The objective is to give some “standing ground” to the player from which he/she 

can deduce remaining cells. The player cannot mark or clear cells until the standing ground is 

selected.  

(c) tolerate 

Description: Marking a cell incorrectly is tolerated as long as the number of cells does not 

exceed the total mines. Marked cells can be unmarked. The player is not allowed to mark more 

cells if the total number of marked cells equals the total number of mines. 

[A1] 
(a) No change to the AD 
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After incorporating (b) 

Deduce cell

Cell marked

[Clear]

Cell cleared

[Mark]

Lose
[Mined][Mine-free]

[More cells 
to deduce]

[All cells 
deduced]Win

(Game over)

[Mined][Mine-free]

(Game over)

(Start game)
Clear standing 

ground

 

Given above is a minimal change. It is OK to show more details of the ‘clear standing ground’ 

action or show it as a separate AD. 

After incorporating (c) 

Deduce cell

Cell marked

[Clear]

Cell cleared

[Mark]

Lose
[Mined][Mine-free]

[More cells 
to deduce]

[All cells 
deduced]

Win

(Game over)

(Game over)

(Start game)
Clear standing 

ground

Cell hidden

[unmark]

[total mines > 
marked]

[total mines == 
marked cells]

 

Note that some actions/paths have been deleted. The above diagram uses a diamond as either a 

branch or a merge (but not both). It is ok to use a diamond as both a merge and branch, as long 

as it does not lead to ambiguities. 
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L10P2.Appendix: State Machine Diagrams 
[This section is for your reference only. It is not examinable] 

The following partial SMD for a Cell object from the Minesweeper illustrates some of the basic 

elements of an SMD: 

 state: A  phase in the objects life-cycle that shows a unique behaviour pattern (shown as 
rounded rectangles) e.g. HIDDEN, CLEARED 

 transition: A movement from one state to another (shown as a directed arrow). 
 trigger: A single event that causes a potential transition e.g. clear 

3

CLEARED
clear

HIDDEN

 

Given below is an SMD for an unidentified application. It illustrates the symbol for the initial 

pseudostate which indicates the starting state of the SMD and the final pseudostate which 

indicates the end of the lifecycle. Note that the final pseudostate can be omitted (for simplicity) 

if there is no specific way to end the object’s lifecycle other that shutting down the system. 

4

initial pseudostate

PAUSEDACTIVE
quitpause

resume final pseudostate

start

quit

 
Given below is the (partial) SMD for the Minesweeper game. Here, we assume that the lifecycle 

of the whole game is managed by one object. Note that PRE_GAME means we have started the 

game but no Minefield has been created yet while READY means the Minefield has been created 

and Minesweeper is ready to play. 

PRE_GAME

LOST

READY
new

IN_PLAY

WON

deduce

deduce

deduce

deduce

deduce

 
Note how the SMD is not precise on which transition to follow if the deduce event happened 

while in IN_PLAY state. i.e. a given event in a given state will not always produce the same 

transition. In simpler terms, it exhibits “random” behavior. Such SMDs are said to be non-

deterministic. Non-deterministic SMDs are not much use to us. We can make an SMD 

deterministic (i.e. make it exhibit “predictable” behavior) by coupling non-deterministic 

transitions with guards. A guard is a boolean condition that must be true for the transition to 

take place. Guard conditions are shown using square brackets, as illustrated below. Guard 

conditions can be given in informal language or using the syntax of the programming language 

(e.g. [size() >= 5]) or using a specialized formal language such as the Object Constraints Language 

(OCL). If all guard conditions are false for a particular occurrence of an event and there is no 

unguarded transition specified, the event will be ignored.  
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7

PRE_GAME

LOST

READY
new

IN_PLAY

WON

deduce

deduce

deduce

deduce

[incorrect deduction]

[incorrect 
deduction][correct 

deduction]

[correct deduction && no 
more cells to deduce]

deduce [correct deduction && 
more cells to deduce]

 
An activity is a behavior that takes place during a transition. The UML syntax is  

event[guard]/activity   where all 3 components are optional. Note that in the context of SMDs, 

‘activity’ ‘action’ and ‘effect’ are used interchangeably. In the following SMD, we assume that MS 

keeps track of the time taken for a game.  

PRE_GAME

LOST

READY
new

IN_PLAY

WON

deduce

deduce

deduce

deduce

[incorrect deduction]

[incorrect 
deduction][correct 

deduction]

[correct deduction && no 
more cells to deduce]

deduce [correct deduction && 
more cells to deduce]/start timer

/stop timer

/stop timer
 

Alternatively, we can put start timer and stop timer as internal activities in the IN_PLAY state. An 

entry activity is an internal activity that is executed whenever object enters the state. Similarly, 

the exit activity is an internal activity that is executed whenever object exits the state.  

entry/ start timer

exit/ stop timer

PRE_GAME

LOST

READY
new

WON

deduce

deduce
deduce

[incorrect deduction]

[incorrect 
deduction][correct 

deduction]

[correct deduction && 
no more cells to deduce]

deduce [correct deduction && 
more cells to deduce]

IN_PLAY/start timer

/stop timer

 
However, the above SMD does not give us the behavior we want because the deduce event 

triggers both entry and exit activities every time a new cell is deduced! That means the timer 

will start from zero every time a cell is deduced. To rectify this, we can make it an internal 

activity, as shown below.  
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entry/ start timer
deduce [correct deduction && 
more cells to deduce] /update minefield
exit/ stop timer

entry/ start timer

exit/ stop timer

IN_PLAY

Other internal activities

deduce [correct deduction && more cells 
to deduce] /update minefield

exits the state → triggers exit activity

IN_PLAY

 
What if we need to update the “elapsed time” variable every 5 seconds during the IN_PLAY state. 

Note that this activity is not triggered by any external event. We can model it using an internal 

do activity, as shown below. Note that entry, do, and exit are UML keywords.  

entry/ start timer
deduce [correct deduction && 
more cells to deduce] /update minefield
do/ update timer every 5 seconds
exit/ stop timer

Internal activity: do

12

IN_PLAY

 
An activity state is a special type of a state that has a do activity and an outgoing transition that 

does not have any event associated with it. Once the do activity is over, the transition without 

any event occurs. The difference between an activity state and a regular activity is that an 

activity state can be interrupted (e.g. using "skip intro" button pressed event) while a regular 

activity cannot be interrupted. The SPLASH_SCREEN state given below is an activity state.  

do/ show splash screen for 10 sec

Activity states

13

SPLASH_SCREEN

PRE_GAME

“skip intro” button pressed
 

If the show splash screen for 10 sec activity cannot be interrupted, we can show it as a regular 

activity, as shown next. 

Activity states

PRE_GAME
/show splash screen for 10 sec

 
The following SMD assumes that we keep a record of the player’s win/lose status. Quitting 

during IN_PLAY is recorded as a loss.  

PRE_GAME

LOST

READY

IN_PLAY

WON

quit quit/record result

quit/record result

quit/record result

quit

 
Apparently, multiple states handle the quit event the same way. For such a situation, we can use 

superstates e.g. COMMITTED to simplify an SMD. 
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PRE_GAME

LOST

READY

IN_PLAY

WON

quit

NOT_COMMITTED

COMMITTED

quit/record result

 
A history state (an ‘H’ inside a circle) is used to show that state goes back to the sub state it was 

in when it left the super state before. The example below shows an SMD for a bank account. The 

unsuspend event makes the account go back to IN_CREDIT or OVERDRAWN, whichever state it 

was in before the account was suspended. 

History state

IN_CREDIT OVERDRAWN SUSPENDED

deposit [amt < -bal]

deposit

withdraw[amt <= bal]
withdraw[amt > bal]

deposit[amt >= -bal] H
unsuspend

ACTIVE

H

suspend

[Ch.4]

amt -> the amount withdrawn or deposited
bal -> account balance before withdrawal/deposit  

Here are the steps we can follow when modelling state-dependent behaviour.  

 Identify classes that show complex state-dependent behaviour. (Most classes do not fall 
into this category) e.g. Cell 

 Identify states  e.g. for Cell class: HIDDEN, MARKED, CLEARED  

 Identify events that can be received by objects of this class (i.e. public operations)  e.g. 
for Cell class: mark, unmark, clear  

 Filter out events that are treated the same way in all states e.g. for the Logic class: 
getWidth(), getHeight(), … 

 For each state, identify how to respond to each of the possible events. 
 Simplify using internal activities, superstates, etc. 

We model state-dependent behavior when it is complex enough to warrant a separate model. If 

the state dependent behavior becomes part of the solution, it makes sense to systematically 

translate those SMDs into code rather than implement the class in a way disconnected from the 

model we created. In this section we look at such systematic ways of implementing state-

dependent behavior. 

There are three approaches commonly used to implement state-dependent behavior. 

 Using switch statements  
 Using the state pattern 
 Using state tables  

First, let us learn the switch statement technique which is the simplest of the three. 

The switch statement technique 
Consider the Cell class and its lifecycle behavior is given in the following SMD. 
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HIDDEN

CLEAREDMARKED

clearmark

unmark

clear
 

Here are the steps we follow in this approach: 

Step 1: Define states 

 Enumerate the states. We can use an enum construct for this. 

 Define a variable to store the current state (for ease of reference, let us call this variable 
the ‘state variable’). 

The code below illustrates how it is done using Java.  

public class Cell {

enum CELL_STATE {CLEARED, MARKED, HIDDEN}

private CELL_STATE state ;

public Cell(int x, int y) {
state = CELL_STATE.HIDDEN;

}
…

} //end class

Step 1:
Define states

Step 2:
Set Initial state in 

constructor

A variable to hold 
current state 

 
Step 2: Record  the object’s current state 

In the constructor, set the state variables to the initial state. 

The code above illustrates this step as well. 

Step 3: Implement each event as an operation 

An event in the SMD corresponds to an operation in the class. Here, we take one event at 

a time and implement the corresponding operation to match the SMD. The logic of the 

operation is handled by a switch statement that is controlled by the state variable. In the 

diagram below, we show how we apply this technique to the mark() operation and the 

clear() operation. It also shows (in the center) the generic form of such an operation.  
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public void clear () {

switch (state) {

case HIDDEN:

state = CELL_STATE.CLEARED;  

break;

case MARKED:

state = CELL_STATE.CLEARED;  

break;

case CLEARED:

break; //do nothing

}

}

public void mark () {

switch (state) {

case HIDDEN:

state = CELL_STATE.MARKED;  

break;

case CLEARED:

break; //do nothing

case MARKED:

break; //do nothing

}

}
public void event (…) {

switch (state) {

case STATE_N:

//behavior for event 
//         when in STATE_N

break;

…

}

}
 

Suppose we want to increase the difficulty of the game by not allowing more than one unmark 

per Cell. Given below is how we can implement the resulting guards and activities. 

public void unmark () {

switch (state) {

case HIDDEN:

break; //do nothing

case MARKED:

if (!unmarkedOnce) { state = CELL_STATE.HIDDEN; unmarkedOnce=true;}

break;

case CLEARED:

break; //do nothing

}

}

HIDDENMARKED
unmark  [!unmarkedOnce] 
/unmarkedOnce=true

 
Now, assume we have the entry activity clearedCells++ in the CLEARED state. We insert the entry 

activity in each place where the state is being changed from any other state to CLEARED.  

entry/ clearedCells++

CLEARED

public void clear () {

switch (state) {

case HIDDEN:

state=CELL_STATE.CLEARED;

clearedCells++; 

break;

case MARKED:

state=CELL_STATE.CLEARED;

clearedCells++;

break;

case CLEARED:

break; //do nothing

}

}
 

Similarly, we insert exit activities where the state variable is being changed from the state in 

concern (i.e. the one that has the exit activity) to another state. The example below shows how 
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to insert the HIDDEN state’s exit activity into the clear() operation. Note that according to the 

SMD, there are two ways to exit the HIDDEN state (clear() operation and the mark() operation), 

both of which need to incorporate the exit activity. 

exit/ hiddenCells--

HIDDEN

public void clear () {

switch (state) {

case HIDDEN:

hiddenCells--;

state=CELL_STATE.CLEARED;

break;

case MARKED:

state=CELL_STATE.CLEARED;

break;

case CLEARED:   break; //do nothing

}

}
 

When superstates are involved, we simply group all the sub-states together in the switch 

statement. Note that the switch statement does not have a separate case for the superstate. 

Neither do we declare the superstates as a member of the enumeration.  

 

24

UNCLEARED

HIDDEN

CLEARED

MARKED

mark

unmark

clear

public void clear () {

switch (state) {

case HIDDEN:

case MARKED:

state = CELL_STATE.CLEARED;  

break;

case CLEARED:

break; //do nothing

}

}

 
Activity states can be implemented as operations. When we want to go into an activity state, we 

simply call the operation that implements the activity state.  

Activity states

public void SPLASH_SCREEN() {
//show splash screen for 10 sec

}

void Application(){ //constructor

SPLASH_SCREEN();

//go to PRE_GAME state

}
 

Using the State pattern 
In this approach, we use inheritance and polymorphism to implement an SMD. You can find 

more about this pattern from many other places where state pattern (a GoF pattern) is 

documented. The diagram given below is simply to give you a rough idea only. 
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<<AbstractState>>

<<State1>>

<<Class 
with state-
dependent 
behavior>>

<<State2>>

1

event( )

event( )

event( ) event( )

state
CellState

Hidden Cleared

1

mark( )
clear()

mark( )
clear()

state

Marked

Cell
mark()
clear()

mark( )
clear()

mark( )
clear()

[Ch.7]

 

Using state tables 
In this approach, we specify the state transition data in a table format (e.g. in a text file or an 

excel file). Here is an example. 

Current state Event Guards Activity Next event 
PRE_GAME new - - READY 
READY deduce Correct 

deduction 
Start timer IN_PLAY 

… … … … … 

Then, we can make our object read this table, interpret it, and behave accordingly. Note that 

there are code generation tools and libraries that help to reduce implementation workload 

when using this approach. One advantage of this approach is we can alter the object’s behavior 

by simply altering the state table, even during runtime. 

[Example 1] 

You are designing software for an emergency phone to be installed in 

security posts around a high security zone. It has a mouth piece, a speaker, 

and the following three buttons: 

 answer button – answers an incoming call 

 hangup button – terminates an ongoing call 

  dial button– dials head office. 

The phone rings when it receives a call. It can receive call from anywhere, but can only make 

calls to the head office.  

Model the behavior of this phone using a state machine diagram. Use the partial state machine 

diagram given below as your starting point. It should capture information such as how the 

telephone will respond when the answer button in pressed while the phone is ringing.  
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[Answer] 

 

Note that we assume the phone does not go from CONNECTD to IDLE unless the ‘HANGUP’ 

button in pressed, even if the phone at the other end was hung up.  

[Example 2] 

An XObject is controlled by events:   powerOn, powerOff, Start, Stop, guardOn, guardOff    

Information about states of XObject are as follows :  

 Safe –     power should be off, and guard should be on 
 Ready – power to be on, and guard to be on 
 Maintain – power to be off, and guard to be off 
 UnSafe – power to be on  , and  guard to be off 
 The object transits to a run state only when power and guard are on, and a start event is 

triggered.  It continues to be in run state until the stop event or poweroff event are 
triggered.  

 Assume initial state of the object is Safe state. 
 

[Answer] 

Safe Ready Run

Maintain Unsafe

powerOn start

stop

powerOn

powerOff
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