
24 Aug 2007 CS2104, Lecture 2 1

Programming Language Concepts,
CS2104
Lecture 2

Oz Syntax, Data structures

24 Aug 2007 CS2104, Lecture 2 2

Reminder of last lecture

� Oz, Mozart
� Concepts of

� Variable, Type, Cell
� Function, Recursion, Induction
� Correctness, Complexity
� Lazy Evaluation
� Higher-Order Programming
� Concurrency, Dataflow
� Object, Classes
� Nondeterminism, Interleaving, Atomicity

24 Aug 2007 CS2104, Lecture 2 3

Overview
� Programming language definition: syntax, semantics

� CFG, EBNF

� Data structures
� simple: integers, floats, literals
� compound: records, tuples, lists

� Kernel language
� linguistic abstraction
� data types
� variables and partial values
� statements and expressions (next lecture)

24 Aug 2007 CS2104, Lecture 2 4

Language Syntax

� Language = Syntax + Semantics
� The syntax of a language is concerned with

the form of a program: how expressions,
commands, declarations etc. are put together
to result in the final program.

� The semantics of a language is concerned
with the meaning of a program: how the
programs behave when executed on
computers.

24 Aug 2007 CS2104, Lecture 2 5

Programming Language Definition

� Syntax: grammatical structure
� Lexical: how words are formed
� Phrasal: how sentences are formed from words

� Semantics: meaning of programs
� Informal: English documents (e.g. reference manuals,

language tutorials and FAQs etc.)
� Formal:

� Operational Semantics (execution on an abstract machine)
� Denotational Semantics (each construct defines a function)
� Axiomatic Semantics (each construct is defined by pre and post

conditions)

24 Aug 2007 CS2104, Lecture 2 6

Language Syntax

� Defines legal programs
� programs that can be executed by machine

� Defined by grammar rules
� define how to make ‘sentences’ out of ‘words’

� For programming languages
� sentences are called statements (commands,

expressions)
� words are called tokens
� grammar rules describe both tokens and

statements

24 Aug 2007 CS2104, Lecture 2 7

Language Syntax

� Token is sequence of characters
� Statement is sequence of tokens
� Lexical analyzer is a program

� recognizes character sequence
� produces token sequence

� Parser is a program
� recognizes a token sequence
� produces statement representation

� Statements are represented as
parse trees

Lexical analyzer

tokens

parse tree

characters

Parser

24 Aug 2007 CS2104, Lecture 2 8

Parse Trees = Abstract Syntax Trees

fun {Fact N}

if N == 0

then

1

else

N*{Fact N-1}

end

end

24 Aug 2007 CS2104, Lecture 2 9

Context-Free Grammars
� A context-free grammar (CFG) is:

� A set of terminal symbols �7 (tokens or constants)
� A set of non-terminal symbols 1
� One (non-terminal) start symbol V
� A set of grammar (rewriting) rules : of the form

¢nonterminal² ::= ¢sequence of terminals and nonterminals²
� Grammar rules (productions) can be used to

� verify that a statement is legal
� generate all possible statements

� The set of all possible statements generated by a
grammar from the start symbol is called a (formal)
language

24 Aug 2007 CS2104, Lecture 2 10

Context-Free Grammars (Example)
� Let 1 = {¢a²}, T = {0,1} , V = ¢a²

: = {¢a² ::= 11¢a²0, ¢a² ::= 110}

110 � L(G)

a

110

2nd rule

111100 � L(G)

a

a

1st rule

11 0

110

2nd rule

But 011 � L(G)

These trees are called parse trees or syntax trees or derivation trees.

a

???

011

24 Aug 2007 CS2104, Lecture 2 11

Why do we need CFGs for describing syntax of
programming languages

� A programming language may have arbitrary number
of nested statements, such as: if-then-else-end,
local-in-end, and so on.

� L1={(if-then)nendn(local-in)mendm | n, m > 0}
� local … in

if … then

local … in … end

else …

end

end

24 Aug 2007 CS2104, Lecture 2 12

Backus-Naur Form
� BNF is a common notation to define context-

free grammars for programming languages
� ¢digit² is defined to represent one of the ten

tokens 0, 1, …, 9
¢digit² ::=0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9

� (Positive) Integers
¢integer² ::= ¢digit² | ¢digit² ¢integer²
¢digit² ::=0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9

� ¢integer² is defined as the sequence of a ¢digit²
followed by zero or more ¢digit²’s

24 Aug 2007 CS2104, Lecture 2 13

Extended Backus-Naur Form
� EBNF is a more compact notation to define the syntax

of programming languages.
� EBNF has the same power as CFG.
� Terminal symbol is a token.
� Nonterminal symbol is a sequence of tokens, and is

represented by a grammar rule:
¢nonterminal² ::= ¢rule body²

� As EBNF, (positive) integers may be defined as:
¢integer² ::= ¢digit² { ¢digit² }

� ¢integer² is defined as the sequence of a ¢digit² followed
by zero or more ¢digit²’s

24 Aug 2007 CS2104, Lecture 2 14

Extended Backus-Naur Form Notations
� ¢x² nonterminal x
� ¢x² ::=Body ¢x² is defined by Body
� ¢x² | ¢y² either ¢x² or ¢y² (choice)
� ¢x² ¢y² the sequence ¢x² followed by ¢y²
� { ¢x² } sequence of zero or more

occurrences of ¢x²
� { ¢x² }+ sequence of one or more

occurrences of ¢x²
� [¢x²] zero or one occurrence of ¢x²

24 Aug 2007 CS2104, Lecture 2 15

Extended Backus-Naur Form Examples

� ¢expression² ::= ¢variable² | ¢integer² | …
� ¢statement² ::=skip | ¢expression² ‘=‘¢expression² | …

| if ¢expression² then ¢statement²
{ elseif ¢expression² then ¢statement² }
[else ¢statement²] end

| …

24 Aug 2007 CS2104, Lecture 2 16

Extended Backus-Naur Form Examples
� Description of (positive) real numbers:

<real-#> ::= <int-part> . <fraction>
<int-part> ::= <digit> | <int-part> <digit>
<fraction> ::= <digit> | <digit> <fraction>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

� Token: 13.79
<real-#>

<int-part> <fraction>.
<digit><int-part>

<digit>

1

3 7

<digit> <fraction>

<digit>

9

24 Aug 2007 CS2104, Lecture 2 17

“In ’57, parsing expressions was not so easy”!

� Describing his early work on
FORTRAN, Backus said:-

“We did not know what we wanted
and how to do it. It just sort of
grew. The first struggle was over
what the language would look
like. Then how to parse
expressions - it was a big
problem and what we did looks
astonishingly clumsy now.... “

� Turing Award, 1977

24 Aug 2007 CS2104, Lecture 2 18

Data Structures (Values)

� Simple data structures
� integers 42, ~1, 0

~ means unary minus

� floating point 1.01, 3.14

� atoms atom, ‘Atom’, nil

� Compound data structures
� tuples: combining several values
� records: generalization of tuples
� lists: special cases of tuples

24 Aug 2007 CS2104, Lecture 2 19

Tuples

� Have a label
� e.g: state

� Combine several values (variables)
� e.g: 1, a, 2
� position is significant!

X=state(1 a 2)
state

1 a 2

X

24 Aug 2007 CS2104, Lecture 2 20

Tuple Operations

� {Label X} returns label of tuple X
� here: state

� is an atom
� {Width X} returns the width (number of fields)

� here: 3
� is a positive integer

X=state(1 a 2)
state

1 a 2

X

24 Aug 2007 CS2104, Lecture 2 21

Tuple Access (Dot)

� Fields are numbered from 1 to {Width X}

� X.N returns N-th field of tuple
� here, X.1 returns 1

� here, X.3 returns 2

� In X.N, N is called feature

X=state(1 a 2)
state

1 a 2

X

24 Aug 2007 CS2104, Lecture 2 22

Tuples for Trees

� Trees can be constructed with tuples:
declare

Y=s(1 2) Z=r(3 4)

X=m(Y Z)

s

1 2

r

3 4

m
X

Y
Z

24 Aug 2007 CS2104, Lecture 2 23

Constructing Tuple Skeletons

� {MakeTuple Label Width}

� creates new tuple with label Label and width Width

� fields are initially unbound

� Access to fields then by “dot”

24 Aug 2007 CS2104, Lecture 2 24

Example Tuple Construction

� Created by execution of
declare

X = {MakeTuple a 3}

a
X

24 Aug 2007 CS2104, Lecture 2 25

Example Tuple Construction
� After execution of
X.2 = b

X.3 = c

a

b c

X

24 Aug 2007 CS2104, Lecture 2 26

Records

� Records are generalizations of tuples
� features can be atoms
� features can be arbitrary integers

� not restricted to start with 1

� not restricted to be consecutive

� Records also have Label and Width

24 Aug 2007 CS2104, Lecture 2 27

Records

� Position is insignificant
� Field access is as with tuples
X.a is 1

X=state(a:1 2:a b:2) state

1 a 2

X

a
2

b

24 Aug 2007 CS2104, Lecture 2 28

Tuples are Records

� Constructing
declare

X = state(1:a 2:b 3:c)

is equivalent to
X = state(a b c)

24 Aug 2007 CS2104, Lecture 2 29

A Way to Build Binary Trees
declare
Root=node(left:X1 right:X2 value:0)
X1=node(left:X3 right:X4 value:1)
X2=node(left:X5 right:X6 value:2)
X3=node(left:nil right:nil value:3)
X4=node(left:nil right:nil value:4)
X5=node(left:nil right:nil value:5)
X6=node(left:nil right:nil value:6)
{Browse Root}
proc {Preorder X}
if X \= nil then {Browse X.value}
if X.left \= nil then {Preorder X.left} end
if X.right \= nil then {Preorder X.right} end

end
end
{Preorder Root}

0

1 2

3 4 5 6

24 Aug 2007 CS2104, Lecture 2 30

A Way to Build Binary Trees

24 Aug 2007 CS2104, Lecture 2 31

Lists
� A list contains a sequence of elements:

� is the empty list, or
� consists of a cons (or list pair) with head and tail

� head contains an element
� tail contains a list

� Lists are encoded with atoms and tuples
� empty list: the atom nil
� cons: tuple of width 2 with label ‘|’

� Special syntax for cons
X = Y|Z

instead of
X = ‘|’(Y Z)

Both are equivalent!

24 Aug 2007 CS2104, Lecture 2 32

An Example List
� After execution of
declare

X1=a|X2 X2=b|X3 X3=c|nil

‘|’

a ‘|’‘|’

b ‘|’‘|’

c nil

X1

24 Aug 2007 CS2104, Lecture 2 33

Simple List Construction

� One can also write
X1=a|b|c|nil

which abbreviates
X1=a|(b|(c|nil)))

which abbreviates
X1=‘|’(a ‘|’(b ‘|’(c nil)))

� Even shorter
X1=[a b c]

24 Aug 2007 CS2104, Lecture 2 34

Computing With Lists

� Remember: a cons is a tuple!
� Access head of cons

X.1

� Access tail of cons
X.2

� Test whether list X is empty:
if X==nil then … else … end

24 Aug 2007 CS2104, Lecture 2 35

Head And Tail
� Define abstractions for lists

fun {Head Xs}

Xs.1

end

fun {Tail Xs}

Xs.2

end

� {Head [a b c]}

returns a
� {Tail [a b c]}

returns [b c]
� {Head {Tail {Tail [a b c]}}}

returns c

24 Aug 2007 CS2104, Lecture 2 36

How to Process Lists. General Method

� Lists are processed recursively
� base case: list is empty (nil)
� inductive case: list is cons

access head, access tail

� Powerful and convenient technique
� pattern matching
� matches patterns of values and provides access

to fields of compound data structures

24 Aug 2007 CS2104, Lecture 2 37

How to Process Lists. Example

� Input: list of integers
� Output: sum of its elements

� implement function Sum

� Inductive definition over list structure
� Sum of empty list is 0
� Sum of non-empty list L is

{Head L} + {Sum {Tail L}}

24 Aug 2007 CS2104, Lecture 2 38

Sum of the Elements of a List using
Conditional Construct

fun {Sum L}

if L==nil

then 0
else {Head L} + {Sum {Tail L}}

end
end

24 Aug 2007 CS2104, Lecture 2 39

Sum of the Elements of a List using
Pattern Matching

fun {Sum L}

case L

of nil then 0

[] H|T then H +{Sum T}

end
end

24 Aug 2007 CS2104, Lecture 2 40

Sum of the Elements of a List using
Pattern Matching

fun {Sum L}

case L

of nil then 0

[] H|T then H +{Sum T}

end
end

Clause

� nil is the pattern of the clause

24 Aug 2007 CS2104, Lecture 2 41

Sum of the Elements of a List using
Pattern Matching

fun {Sum L}

case L

of nil then 0

[] H|T then H +{Sum T}

end
end

Clause

� H|T is the pattern of the clause

24 Aug 2007 CS2104, Lecture 2 42

Pattern Matching

� The first clause uses of, all other []
� Clauses are tried in textual order (left to right,

top to bottom)
� A clause matches, if its pattern matches
� A pattern matches, if the width, label and

features agree
� then, the variables in the pattern are assigned to

the respective fields
� Case-statement executes with first matching

clause

24 Aug 2007 CS2104, Lecture 2 43

Length of a List

� Inductive definition
� length of empty list is 0

� length of cons is 1 + length of tail

fun {Length Xs}

case Xs

of nil then 0

[] X|Xr then 1+{Length Xr}

end
end

24 Aug 2007 CS2104, Lecture 2 44

General Pattern Matching

� Pattern matching can be used not only for lists!
� Any value, including numbers, atoms, tuples,

records
fun {DigitToString X}

case X

of 0 then “Zero”

[] 1 then “One”

[] . . .

end
end

24 Aug 2007 CS2104, Lecture 2 45

Language Semantics

� Defines what a program does when executed
� Considerations:

� simplicity
� allow programmer to reason about program

(correctness, execution time, and memory use)
� Practical language used to build complex

systems (millions lines of code) must often be
expressive.

� Solution : Kernel language approach for
semantics

24 Aug 2007 CS2104, Lecture 2 46

Kernel Language Approach

� Define simple language (kernel language)
� Define its computation model

� how language constructs (statements)
manipulate (create and transform) data structures

� Define mapping scheme (translation) of full
programming language into kernel language

� Two kinds of translations
� linguistic abstractions
� syntactic sugar

24 Aug 2007 CS2104, Lecture 2 47

Kernel Language Approach

practical language

kernel language

translation

fun {Sqr X} X*X end
B = {Sqr {Sqr A}}

proc {Sqr X Y}
{ * X X Y}

end
local T in

{Sqr A T}
{Sqr T B}

end

• Provides useful abstractions
for programmer

• Can be extended with linguistic
abstractions

• Easy to reason with
• Has a precise (formal) semantics

24 Aug 2007 CS2104, Lecture 2 48

Linguistic Abstractions Ù Syntactic Sugar

� Linguistic abstractions provide higher level
concepts
� programmer uses to model and reason about

programs (systems)
� examples: functions (fun), iterations (for), classes

and objects (class)

� Functions (calls) are translated to
procedures (calls). This eliminates a
redundant construct from the semantics
viewpoint.

24 Aug 2007 CS2104, Lecture 2 49

Linguistic Abstractions Ù Syntactic Sugar

� Linguistic abstractions:
provide higher level concepts

� Syntactic sugar:
short cuts and conveniences to
improve readability

if N==1 then[1]
else

local L in
…

end
end

if N==1 then[1]
elseL in

…
end

24 Aug 2007 CS2104, Lecture 2 50

Approaches to Semantics

Programming Language

Kernel Language

Operational model

Formal Calculus Abstract Machine

Aid programmer
in reasoning and
understanding

Mathematical study of
programming (languages)
O-calculus, predicate calculus,
S-calculus

Aid implementer in
efficient execution on
a real machine

24 Aug 2007 CS2104, Lecture 2 51

Sequential Declarative Computation Model

� Single assignment store
� declarative (dataflow) variables and values (together called

entities)
� values and their types

� Kernel language syntax
� Environment

� maps textual variable names (variable identifiers) into entities
in the store

� Execution of kernel language statements
� execution stack of statements (defines control)
� store
� transforms store by sequence of steps

24 Aug 2007 CS2104, Lecture 2 52

Single Assignment Store

� Single assignment
store is store (set) of
variables

� Initially variables are
unbound

� Example: store with
three variables, x1, x2,
and x3

unbound

Store

x1

unboundx2

unboundx3

24 Aug 2007 CS2104, Lecture 2 53

Single Assignment Store

� Variables in store may be
bound to values

� Example:
� x1 is bound to integer

314
� x2 is bound to list [1 2 3]
� x3 is still unbound

Store

x1

x2

unboundx3

314

1 | 2 | 3 | nil

24 Aug 2007 CS2104, Lecture 2 54

Reminder : Variables and Partial Values
� Declarative variable

� resides in single-assignment store
� is initially unbound
� can be bound to exactly one (partial) value
� can be bound to several (partial) values as long as they

are compatible with each other
� Partial value

� data-structure that may contain unbound variables
� when one of the variables is bound, it is replaced by the

(partial) value it is bound to
� a complete value, or value for short is a data-structure

that does not contain any unbound variable

24 Aug 2007 CS2104, Lecture 2 55

Value Expressions in the Kernel Language

¢v² ::= ¢number² | ¢record² | ¢procedure²

¢number² ::= ¢int² | ¢float²
¢record², ¢pattern² ::= ¢literal² |

¢literal² (¢feature1² : ¢x1² … ¢featuren² : ¢xn²)
¢literal² ::= ¢atom² | ¢bool²
¢feature² ::= ¢int² | ¢atom² | ¢bool²
¢bool² ::= true | false

¢procedure²::= proc {$ ¢y1² … ¢yn²} ¢s² end

24 Aug 2007 CS2104, Lecture 2 56

Statements and Expressions

� Expressions describe computations that return
a value

� Statements just describe computations
� Transforms the state of a store (single assignment)

� Kernel language
� Expressions allowed: value construction for

primitive data types
� Otherwise statements

24 Aug 2007 CS2104, Lecture 2 57

Variable Identifiers

� ¢x² , ¢y², ¢z² stand for variables identifiers
� Concrete kernel language variables identifiers

� begin with an upper-case letter
� followed by (possibly empty) sequence of

alphanumeric characters or underscore
� Any sequence of characters within backquotes
� Examples:

� X, Y1

� Hello_World

� ‘hello this is a $5 bill‘ (backquote)

24 Aug 2007 CS2104, Lecture 2 58

Values and Types
� Data type

� set of values
� set of associated operations

� Example: Int is data type ”Integer”
� set of all integer values
� 1 is of type Int

� has set of operations including +, -, *, div, etc

� Model comes with a set of basic types
� Programs can define other types

� for example: abstract data types - ADT (<Stack T> is an ADT
with elements of type T and 4 operations. Type T can be
anything, and the operations must satisfy certain laws, but
they can have any particular implementation – Section 3.7)

24 Aug 2007 CS2104, Lecture 2 59

Data Types

Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

True False

Char

Tuple

List

String

24 Aug 2007 CS2104, Lecture 2 60

Kernel’s Primitive Data Types

Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

True False

Char

Tuple

List

String

24 Aug 2007 CS2104, Lecture 2 61

Numbers
� Number: either Integer or Float
� Integers:

� Decimal base:
� 314, 0, ~10 (minus 10)

� Hexadecimal base:
� 0xA4 (164 in decimal base)

� 0X1Ad (429 in decimal base)

� Binary base:
� 0b1101 (13 in decimal base)

� 0B11 (3 in decimal base)

� Floats:
� 1.0, 3.4, 2.34e2, ~3.52E~3 (~3.52u10-3)

24 Aug 2007 CS2104, Lecture 2 62

Literals: Atoms and Booleans

� Literal: atom or boolean
� Atom (symbolic constant):

� A sequence starting with a lower-case character
followed by characters or digits: person, peter

� Any sequence of printable characters enclosed in
single quotes: ’I am an atom’, ’Me too’

� Note: backquotes are used for variable identifier (‘John Doe‘)

� Booleans:
� true

� false

24 Aug 2007 CS2104, Lecture 2 63

Records
� Compound data-structures

� ¢l² (¢f1² : ¢x1² … ¢fn² : ¢xn²)
� the label: ¢l² is a literal
� the features: ¢f1², … , ¢fn² can be atoms, integers, or booleans
� the variable identifiers: ¢x1², … , ¢xn²

� Examples:
� person(age:X1 name:X2)

� person(1:X1 2:X2)

� ’|’(1:H 2:T) % no space after ’|’

� nil

� person
� An atom is a record without features!

24 Aug 2007 CS2104, Lecture 2 64

Syntactic Sugar

� Tuples
¢l²(¢x1² … ¢xn²) (tuple)

equivalent to record
¢l²(1: ¢x1² … n: ¢xn²)

� Lists ‘|’ (¢hd² ¢tl²)
� A string:

� a list of character codes:

� can be written with double quotes: "We like Oz."

24 Aug 2007 CS2104, Lecture 2 65

Operations on Basic Types
� Numbers

� floats: +, -, *, /

� integers: +, -, *, div, mod
� Records

� Arity, Label, Width, and ”.”
� X = person(name:"George" age:25)

� {Arity X} returns [age name]
� {Label X} returns person
� X.age returns 25

� Comparisons (integers, floats, and atoms)
� equality: ==, \=

� order: =<, <, >=

24 Aug 2007 CS2104, Lecture 2 66

Variable-Variable Equality (Unification)
� It is a special case of unification
� Example: constructing graphs
declare

Y Z

X=a(Y Z)

a

X

Y Z

24 Aug 2007 CS2104, Lecture 2 67

Variable-Variable Equality (Unification)

� Now bind Z to X
Z = X

� Possible due to deferred assignment

a

X

Y Z

24 Aug 2007 CS2104, Lecture 2 68

Variable-Variable Equality (Unification)
� Consider X=Y when both X and Y are bound
� Case one: no variables involved

� If the graphs starting from the nodes of X and Y have
the same structure, then do nothing (also called
structure equality).

� If the two terms cannot be made equal, then an
exception is raised.

� Case two: X or Y refer to partial values
� the respective variables are bound to make X and Y

the “same”

24 Aug 2007 CS2104, Lecture 2 69

Case One: no Variables Involved

� This is not unification, because there will no binding.
� declare
X=r(a b) Y=r(a b)
X=Y % passes silently

� declare
X=r(a b) Y=r(a c)
X=Y % raises an failure error

� Failure errors are exceptions which should be
caught.

24 Aug 2007 CS2104, Lecture 2 70

Case two: X or Y refers to partial values
� Unification is used because of partial values.
� declare

r(X Y)=r(1 2)

� X is bound to 1, Y is bound to 2
� declare U Z

X=name(a U)

Y=name(Z b)

X=Y

� U is bound to b, Z is bound to a

24 Aug 2007 CS2104, Lecture 2 71

Case two: X or Y refers to partial values
� declare

X=r(name:full(Given Family)
age:22)

Y=r(name:full(claudia Johnson)
age:A)

X=Y % Given=claudia,A=22,Johnson=Family

� declare
X=r(a X) Y=r(a r(a Y))
X=Y % this is fine

� Both X, Y are r(a r(a r(a …))) % ad infinitum

24 Aug 2007 CS2104, Lecture 2 72

Unification
� unify(x, y) is the operation that unifies two

partial values x and y in the store
� Store is a set {x1, . . . , xk} partitioned as

follows:
� Sets of unbound variables that are equal (also

called equivalence sets of variables).
� Variables bound to a number, record, or

procedure (also called determined variables).
� Example: {x1=name(a:x2), x2=x9=73,

x3=x4=x5, x6, x7=x8}

24 Aug 2007 CS2104, Lecture 2 73

Unification. The primitive bind
operation

� bind(ES, <v>) binds all variables in the
equivalence set ES to <v>.
� Example: bind({x7, x8}, name(a:x2))

� bind(ES1,ES2) merges the equivalence set ES1
with the equivalence set ES2.
� Example: bind({x3, x4, x5}, {x6})

24 Aug 2007 CS2104, Lecture 2 74

The Unification Algorithm: unify(x,y)
1. If x is in ESx and y is in ESy, then do bind(ESx,ESy).
2. If x is in ESx and y is determined, then do bind(ESx, y).
3. If y is in ESy and x is determined, then do bind(ESy, x).
4. If

1. x is bound to l(l1:x1,…, ln:xn) and y is bound to l’(l’1:y1,…, l’m:ym)
with l � l’ or

2. {l1, . . . , ln} � {l’1, . . . , l’m },

then raise a failure exception.
5. If x is bound to l(l1:x1,…, ln:xn) and y is bound to

l(l1:y1,…, ln:yn), then for i from 1 to n do unify(xi, yi).

24 Aug 2007 CS2104, Lecture 2 75

Handling Cycles

� The above algorithm does not handle
unification of partial values with cycles.

� Example:
� The store contains x = f(a:x) and y = f(a:y).
� Calling unify(x, y) results in the recursive call

unify(x, y), …
� The algorithm loops forever!

� However x and y have exactly the same
structure!

24 Aug 2007 CS2104, Lecture 2 76

The New Unification Algorithm: unify’(x,y)

� Let M be an empty table (initially) to be used
for memoization.

� Call unify’(x, y).
� Where unify’(x, y) is:

� If (x, y) � M, then we are done.
� Otherwise, insert (x, y) in M and then do the

original algorithm for unify(x, y), in which the
recursive calls to unify are replaced by calls to
unify’.

24 Aug 2007 CS2104, Lecture 2 77

Displaying cyclic structures

� Example: rational trees (section 12.3.1) The graph X=foo(X)
represents the tree X=foo(foo(foo(...))).

declare X

X = ’|’(a ’|’(b X)) % or X = a | b | X

{Browse X}

24 Aug 2007 CS2104, Lecture 2 78

Entailment (the == operation)

� It returns the value true if the graphs starting
from the nodes of X and Y have the same
structure (it is called also structure equality).

� It returns the value false if the graphs have
different structure, or some pairwise
corresponding nodes have different values.

� It blocks when it arrives at pairwise
corresponding nodes that are different, but at
least one of them is unbound.

24 Aug 2007 CS2104, Lecture 2 79

Entailment (example)
� Entailment check/test never do any binding.
� declare
L1=[1 2]

L2=’|’(1 ’|’(2 nil))
L3=[1 3]
{Browse L1==L2}
{Browse L1==L3}

� declare
L1=[1]
L2=[X]
{Browse L1==L2}

� % blocks as X is unbound

24 Aug 2007 CS2104, Lecture 2 80

Summary

� Programming language definition: syntax, semantics
� CFG, EBNF, ambiguity

� Data structures
� simple: integers, floats, literals
� compound: records, tuples, lists

� Kernel language
� linguistic abstraction
� data types
� variables and partial values
� statements and expressions (next lecture)

24 Aug 2007 CS2104, Lecture 2 81

Lab Session 0

� Wed 24th August 2007
� Time : 3-6pm (choose 1-hr slot)
� Venue : -
� Deadline : 28th August 2007 5pm

24 Aug 2007 CS2104, Lecture 2 82

Reading suggestions

� From [van Roy,Haridi; 2004]
� Chapter 2, Sections 2.1.1-2.3.5
� Appendices B, C
� Exercises 2.9.1-2.9.3

