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Reminder of last lecture

� Oz, Mozart
� Concepts of 

� Variable, Type, Cell
� Function, Recursion, Induction
� Correctness, Complexity
� Lazy Evaluation
� Higher-Order Programming
� Concurrency, Dataflow
� Object, Classes
� Nondeterminism, Interleaving, Atomicity
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Overview
� Programming language definition: syntax, semantics

� CFG, EBNF

� Data structures
� simple: integers, floats, literals
� compound: records, tuples, lists

� Kernel language
� linguistic abstraction
� data types  
� variables and partial values  
� statements and expressions (next lecture)
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Language Syntax

� Language = Syntax + Semantics
� The syntax of a language is concerned with 

the form of a program: how expressions, 
commands, declarations etc. are put together 
to result in the final program.

� The semantics of a language is concerned 
with the meaning of a program: how the 
programs behave when executed on 
computers.



24 Aug 2007 CS2104, Lecture 2 5

Programming Language Definition

� Syntax: grammatical structure
� Lexical: how words are formed
� Phrasal: how sentences are formed from words

� Semantics: meaning of programs
� Informal: English documents (e.g. reference manuals, 

language tutorials and FAQs etc.)
� Formal:

� Operational Semantics (execution on an abstract machine)
� Denotational Semantics (each construct defines a function)
� Axiomatic Semantics (each construct is defined by pre and post 

conditions)
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Language Syntax

� Defines legal programs
� programs that can be executed by machine

� Defined by grammar rules
� define how to make ‘sentences’ out of ‘words’

� For programming languages
� sentences are called statements (commands, 

expressions)
� words are called tokens
� grammar rules describe both tokens and 

statements
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Language Syntax

� Token is sequence of characters
� Statement is sequence of tokens
� Lexical analyzer is a program

� recognizes character sequence
� produces token sequence

� Parser is a program
� recognizes a token sequence
� produces statement representation

� Statements are represented as 
parse trees

Lexical analyzer

tokens

parse tree

characters

Parser
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Parse Trees = Abstract Syntax Trees

fun {Fact N}

if N == 0 

then 

1

else 

N*{Fact N-1} 

end

end
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Context-Free Grammars
� A context-free grammar (CFG) is:

� A set of terminal symbols �7 (tokens or constants)
� A set of non-terminal symbols 1
� One (non-terminal) start symbol V
� A set of grammar (rewriting) rules : of the form

¢nonterminal² ::= ¢sequence of terminals and nonterminals²
� Grammar rules (productions) can be used to

� verify that a statement is legal
� generate all possible statements

� The set of all possible statements generated by a 
grammar from the start symbol is called a (formal)
language
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Context-Free Grammars (Example)
� Let 1 = {¢a²},     T = {0,1} ,       V = ¢a²

: = {¢a² ::= 11¢a²0,  ¢a² ::= 110}

110 � L(G)

a

110

2nd rule

111100 � L(G)

a

a

1st rule

11 0

110

2nd rule

But 011 � L(G)

These trees are called parse trees or syntax trees or derivation trees.

a

???

011
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Why do we need CFGs for describing syntax of 
programming languages

� A programming language may have arbitrary number 
of nested statements, such as: if-then-else-end, 
local-in-end, and so on.

� L1={(if-then)nendn(local-in)mendm | n, m > 0} 
� local … in

if … then 

local … in … end

else …

end

end



24 Aug 2007 CS2104, Lecture 2 12

Backus-Naur Form
� BNF is a common notation to define context-

free grammars for programming languages
� ¢digit² is defined to represent one of the ten 

tokens 0, 1, …, 9
¢digit² ::=0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9

� (Positive) Integers
¢integer² ::= ¢digit² | ¢digit² ¢integer²
¢digit² ::=0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9

� ¢integer² is defined as the sequence of a ¢digit²
followed by zero or more ¢digit²’s
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Extended Backus-Naur Form
� EBNF is a more compact notation to define the syntax 

of programming languages. 
� EBNF has the same power as CFG.
� Terminal symbol is a token.
� Nonterminal symbol is a sequence of tokens, and is 

represented by a grammar rule:
¢nonterminal² ::= ¢rule body²

� As EBNF, (positive) integers may be defined as:
¢integer² ::=   ¢digit² { ¢digit² }

� ¢integer² is defined as the sequence of a ¢digit² followed 
by zero or more ¢digit²’s
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Extended Backus-Naur Form Notations
� ¢x² nonterminal x
� ¢x² ::=Body ¢x² is defined by Body
� ¢x² | ¢y² either ¢x² or ¢y² (choice)
� ¢x² ¢y² the sequence ¢x² followed by ¢y²
� { ¢x² } sequence of zero or more

occurrences of ¢x²
� { ¢x² }+ sequence of one or more

occurrences of ¢x²
� [ ¢x² ] zero or one occurrence of ¢x²
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Extended Backus-Naur Form Examples

� ¢expression² ::= ¢variable² | ¢integer² | …
� ¢statement² ::=skip | ¢expression² ‘=‘¢expression² | …

| if ¢expression² then ¢statement²
{ elseif ¢expression² then ¢statement² }
[ else ¢statement² ] end

| …
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Extended Backus-Naur Form Examples
� Description of (positive) real numbers:

<real-#> ::= <int-part> . <fraction>
<int-part> ::= <digit> | <int-part> <digit>
<fraction> ::= <digit> | <digit> <fraction>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

� Token: 13.79
<real-#>

<int-part> <fraction>.
<digit><int-part>

<digit>

1

3 7

<digit> <fraction>

<digit>

9
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“In ’57, parsing expressions was not so easy”!

� Describing his early work on 
FORTRAN, Backus said:-

“We did not know what we wanted 
and how to do it. It just sort of 
grew. The first struggle was over 
what the language would look 
like. Then how to parse 
expressions - it was a big 
problem and what we did looks 
astonishingly clumsy now.... “

� Turing Award, 1977
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Data Structures (Values)

� Simple data structures
� integers 42, ~1, 0

~ means unary minus

� floating point 1.01, 3.14

� atoms atom, ‘Atom’, nil

� Compound data structures
� tuples: combining several values
� records: generalization of tuples
� lists: special cases of tuples
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Tuples

� Have a label
� e.g:  state

� Combine several values (variables)
� e.g:  1, a, 2
� position is significant!

X=state(1 a 2)
state

1 a 2

X
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Tuple Operations

� {Label X} returns label of tuple X
� here: state

� is an atom
� {Width X} returns the width (number of fields)

� here: 3
� is a positive integer

X=state(1 a 2)
state

1 a 2

X
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Tuple Access (Dot)

� Fields are numbered from 1 to {Width X}

� X.N returns N-th field of tuple
� here, X.1 returns 1

� here, X.3 returns 2

� In X.N, N is called feature

X=state(1 a 2)
state

1 a 2

X
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Tuples for Trees

� Trees can be constructed with tuples:
declare

Y=s(1 2) Z=r(3 4)

X=m(Y Z)

s

1 2

r

3 4

m
X

Y
Z
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Constructing Tuple Skeletons

� {MakeTuple Label Width}

� creates new tuple with label Label and width Width

� fields are initially unbound

� Access to fields then by “dot”
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Example Tuple Construction

� Created by execution of
declare

X = {MakeTuple a 3}

a
X
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Example Tuple Construction
� After execution of
X.2 = b

X.3 = c

a

b c

X
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Records

� Records are generalizations of tuples
� features can be atoms
� features can be arbitrary integers

� not restricted to start with 1

� not restricted to be consecutive

� Records also have Label and Width
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Records

� Position is insignificant
� Field access is as with tuples
X.a is 1

X=state(a:1 2:a b:2) state

1 a 2

X

a
2

b
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Tuples are Records

� Constructing
declare

X = state(1:a 2:b 3:c)

is equivalent to
X = state(a b c)
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A Way to Build Binary Trees
declare
Root=node(left:X1 right:X2 value:0)
X1=node(left:X3 right:X4 value:1)
X2=node(left:X5 right:X6 value:2)
X3=node(left:nil right:nil value:3)
X4=node(left:nil right:nil value:4)
X5=node(left:nil right:nil value:5)
X6=node(left:nil right:nil value:6)
{Browse Root}
proc {Preorder X}
if X \= nil then {Browse X.value}
if X.left \= nil then {Preorder X.left} end
if X.right \= nil then {Preorder X.right} end

end
end
{Preorder Root}

0

1 2

3 4 5 6
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A Way to Build Binary Trees
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Lists
� A list contains a sequence of elements:

� is the empty list, or
� consists of a cons (or list pair) with head and tail

� head contains an element
� tail contains a list

� Lists are encoded with atoms and tuples
� empty list: the atom nil
� cons: tuple of width 2 with label ‘|’

� Special syntax for cons
X = Y|Z

instead of
X = ‘|’(Y Z)

Both are equivalent!
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An Example List
� After execution of
declare

X1=a|X2   X2=b|X3   X3=c|nil

‘|’

a ‘|’‘|’

b ‘|’‘|’

c nil

X1
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Simple List Construction

� One can also write
X1=a|b|c|nil

which abbreviates
X1=a|(b|(c|nil)))

which abbreviates
X1=‘|’(a ‘|’(b ‘|’(c nil)))

� Even shorter
X1=[a b c]
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Computing With Lists

� Remember: a cons is a tuple!
� Access head of cons

X.1

� Access tail of cons
X.2

� Test whether list X is empty:
if X==nil then … else … end
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Head And Tail
� Define abstractions for lists

fun {Head Xs}

Xs.1

end

fun {Tail Xs}

Xs.2

end

� {Head [a b c]}

returns a
� {Tail [a b c]}

returns [b c]
� {Head {Tail {Tail [a b c]}}}

returns c
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How to Process Lists. General Method

� Lists are processed recursively
� base case: list is empty (nil)
� inductive case: list is cons

access head, access tail

� Powerful and convenient technique
� pattern matching
� matches patterns of values and provides access 

to fields of compound data structures
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How to Process Lists. Example

� Input: list of integers
� Output: sum of its elements

� implement function Sum

� Inductive definition over list structure
� Sum of empty list is 0
� Sum of non-empty list L is 

{Head L} + {Sum {Tail L}}
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Sum of the Elements of a List using 
Conditional Construct

fun {Sum L}

if L==nil 

then 0
else {Head L} + {Sum {Tail L}}

end
end
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Sum of the Elements of a List using 
Pattern Matching

fun {Sum L}

case L

of nil then 0

[] H|T then H +{Sum T}

end
end
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Sum of the Elements of a List using 
Pattern Matching

fun {Sum L}

case L 

of nil then 0

[] H|T then H +{Sum T}

end
end

Clause

� nil is the pattern of the clause
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Sum of the Elements of a List using 
Pattern Matching

fun {Sum L}

case L

of nil then 0

[] H|T then H +{Sum T}

end
end

Clause

� H|T is the pattern of the clause
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Pattern Matching

� The first clause uses of, all other []
� Clauses are tried in textual order (left to right, 

top to bottom)
� A clause matches, if its pattern matches
� A pattern matches, if the width, label and 

features agree
� then, the variables in the pattern are assigned to 

the respective fields
� Case-statement executes with first matching 

clause



24 Aug 2007 CS2104, Lecture 2 43

Length of a List

� Inductive definition
� length of empty list is 0

� length of cons is 1 + length of tail

fun {Length Xs}

case Xs

of nil then 0

[] X|Xr then 1+{Length Xr}

end
end
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General Pattern Matching

� Pattern matching can be used not only for lists!
� Any value, including numbers, atoms, tuples, 

records
fun {DigitToString X}

case X

of 0 then “Zero”

[] 1 then “One”

[] . . .

end
end
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Language Semantics

� Defines what a program does when executed
� Considerations:

� simplicity 
� allow programmer to reason about program 

(correctness, execution time, and memory use)
� Practical language used to build complex 

systems (millions lines of code) must often be 
expressive.

� Solution : Kernel language approach for 
semantics
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Kernel Language Approach

� Define simple language (kernel language)
� Define its computation model

� how language constructs (statements)
manipulate (create and transform) data structures

� Define mapping scheme (translation) of full 
programming language into kernel language

� Two kinds of translations 
� linguistic abstractions
� syntactic sugar 
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Kernel Language Approach

practical language

kernel language

translation

fun {Sqr X} X*X end
B = {Sqr {Sqr A}}

proc {Sqr X Y} 
{ * X X Y}

end
local T in

{Sqr A T}
{Sqr T B}

end

• Provides useful abstractions
for programmer

• Can be extended with linguistic
abstractions

• Easy to reason with
• Has a precise (formal) semantics
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Linguistic Abstractions Ù Syntactic Sugar

� Linguistic abstractions provide higher level 
concepts
� programmer uses to model and reason about 

programs (systems)
� examples: functions (fun), iterations (for), classes 

and objects (class)

� Functions (calls) are translated to 
procedures (calls). This eliminates a 
redundant construct from the semantics 
viewpoint.
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Linguistic Abstractions Ù Syntactic Sugar

� Linguistic abstractions: 
provide higher level concepts

� Syntactic sugar: 
short cuts and conveniences to 
improve readability

if N==1 then[1]
else

local L in
…

end
end

if N==1 then[1]
elseL in

…
end
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Approaches to Semantics

Programming Language

Kernel Language

Operational model

Formal Calculus Abstract Machine

Aid programmer
in reasoning and
understanding

Mathematical study of
programming (languages)
O-calculus, predicate calculus,
S-calculus

Aid implementer in
efficient execution on
a real machine
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Sequential Declarative Computation Model

� Single assignment store
� declarative (dataflow) variables and values (together called 

entities)
� values and their types

� Kernel language syntax
� Environment

� maps textual variable names (variable identifiers) into entities
in the store

� Execution of kernel language statements
� execution stack of statements (defines control)
� store
� transforms store by sequence of steps
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Single Assignment Store 

� Single assignment 
store is store (set) of 
variables 

� Initially variables are 
unbound

� Example: store with 
three variables, x1, x2, 
and x3

unbound

Store

x1

unboundx2

unboundx3
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Single Assignment Store

� Variables in store may be 
bound to values

� Example: 
� x1 is bound to integer 

314
� x2 is bound to list [1 2 3]
� x3 is still unbound

Store

x1

x2

unboundx3

314

1 |  2 |  3 | nil
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Reminder : Variables and Partial Values
� Declarative variable

� resides in single-assignment store
� is initially unbound
� can be bound to exactly one (partial) value
� can be bound to several (partial) values as long as they 

are compatible with each other
� Partial value

� data-structure that may contain unbound variables
� when one of the variables is bound, it is replaced by the 

(partial) value it is bound to
� a complete value, or value for short is a data-structure 

that does not contain any unbound variable
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Value Expressions in the Kernel Language

¢v² ::= ¢number² | ¢record² | ¢procedure²

¢number² ::= ¢int² |  ¢float²
¢record², ¢pattern² ::= ¢literal² |

¢literal² (¢feature1² : ¢x1² … ¢featuren² : ¢xn²)
¢literal² ::= ¢atom² | ¢bool²
¢feature² ::= ¢int² | ¢atom² | ¢bool²
¢bool² ::=  true |  false

¢procedure²::= proc {$ ¢y1² … ¢yn²} ¢s² end
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Statements and Expressions

� Expressions describe computations that return 
a value

� Statements just describe computations 
� Transforms the state of a store (single assignment)

� Kernel language
� Expressions allowed: value construction for 

primitive data types
� Otherwise statements
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Variable Identifiers

� ¢x² , ¢y², ¢z² stand for variables identifiers
� Concrete kernel language variables identifiers

� begin with an upper-case letter
� followed by (possibly empty) sequence of 

alphanumeric characters or underscore
� Any sequence of characters within backquotes
� Examples:

� X, Y1

� Hello_World

� ‘hello this is a $5 bill‘ (backquote)
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Values and Types
� Data type

� set of values 
� set of associated operations

� Example: Int is data type ”Integer”
� set of all integer values
� 1 is of type Int

� has set of operations including +, -, *, div, etc

� Model comes with a set of basic types
� Programs can define other types 

� for example: abstract data types - ADT (<Stack T> is an ADT 
with elements of type T and 4 operations. Type T can be 
anything, and the operations must satisfy certain laws, but 
they can have any particular implementation – Section 3.7)
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Data Types

Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

True False

Char

Tuple

List

String



24 Aug 2007 CS2104, Lecture 2 60

Kernel’s Primitive Data Types

Value

Number

Literal

Record Procedure

Int Float

Atom Boolean

True False

Char

Tuple

List

String
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Numbers
� Number: either Integer or Float
� Integers:

� Decimal base: 
� 314, 0, ~10 (minus 10)

� Hexadecimal base:
� 0xA4 (164 in decimal base)

� 0X1Ad (429 in decimal base)

� Binary base: 
� 0b1101 (13 in decimal base)

� 0B11 (3 in decimal base)

� Floats:
� 1.0, 3.4, 2.34e2, ~3.52E~3 (~3.52u10-3)
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Literals: Atoms and Booleans

� Literal: atom or boolean
� Atom (symbolic constant):

� A sequence starting with a lower-case character 
followed by characters or digits: person, peter

� Any sequence of printable characters enclosed in 
single quotes: ’I am an atom’, ’Me too’

� Note: backquotes are used for variable identifier ( ‘John Doe‘ )

� Booleans:
� true

� false
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Records
� Compound data-structures

� ¢l² ( ¢f1² : ¢x1² … ¢fn² : ¢xn² )
� the label: ¢l² is a literal
� the features: ¢f1², … , ¢fn² can be atoms, integers, or booleans
� the variable identifiers: ¢x1², … , ¢xn²

� Examples:
� person(age:X1 name:X2)

� person(1:X1 2:X2)

� ’|’(1:H 2:T) % no space after ’|’

� nil

� person
� An atom is a record without features!
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Syntactic Sugar

� Tuples
¢l²(¢x1² … ¢xn²) (tuple)

equivalent to record
¢l²(1: ¢x1² … n: ¢xn²)

� Lists     ‘|’ (¢hd² ¢tl²)
� A string:

� a list of character codes: 

� can be written with double quotes: "We like Oz."
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Operations on Basic Types
� Numbers

� floats: +, -, *, /

� integers:  +, -, *, div, mod
� Records

� Arity, Label, Width, and ”.”
� X = person(name:"George" age:25)

� {Arity X} returns [age name]
� {Label X} returns person 
� X.age returns 25

� Comparisons (integers, floats, and atoms)
� equality: ==, \=

� order: =<, <, >=
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Variable-Variable Equality (Unification)
� It is a special case of unification
� Example: constructing graphs
declare

Y Z 

X=a(Y Z)

a

X

Y Z
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Variable-Variable Equality (Unification)

� Now bind Z to X
Z = X

� Possible due to deferred assignment

a

X

Y Z



24 Aug 2007 CS2104, Lecture 2 68

Variable-Variable Equality (Unification)
� Consider  X=Y when both X and Y are bound
� Case one: no variables involved 

� If the graphs starting from the nodes of X and Y have 
the same structure, then do nothing (also called 
structure equality).

� If the two terms cannot be made equal, then an 
exception is raised.

� Case two: X or Y refer to partial values
� the respective variables are bound to make X and Y

the “same”
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Case One: no Variables Involved

� This is not unification, because there will no binding.
� declare
X=r(a b) Y=r(a b)
X=Y % passes silently

� declare
X=r(a b) Y=r(a c)
X=Y % raises an failure error

� Failure errors are exceptions which should be 
caught. 
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Case two: X or Y refers to partial values
� Unification is used because of partial values.
� declare

r(X Y)=r(1 2)

� X is bound to 1, Y is bound to 2
� declare U Z 

X=name(a U) 

Y=name(Z b) 

X=Y

� U is bound to b, Z is bound to a



24 Aug 2007 CS2104, Lecture 2 71

Case two: X or Y refers to partial values
� declare

X=r(name:full(Given Family)  
age:22)

Y=r(name:full(claudia Johnson) 
age:A)

X=Y % Given=claudia,A=22,Johnson=Family

� declare
X=r(a X) Y=r(a r(a Y))
X=Y  % this is fine

� Both X, Y are r(a r(a r(a …))) % ad infinitum



24 Aug 2007 CS2104, Lecture 2 72

Unification
� unify(x, y) is the operation that unifies two 

partial values x and y in the store 
� Store is a set {x1, . . . , xk} partitioned as 

follows:
� Sets of unbound variables that are equal (also 

called equivalence sets of variables).
� Variables bound to a number, record, or 

procedure (also called determined variables).
� Example: {x1=name(a:x2),  x2=x9=73, 

x3=x4=x5,   x6,     x7=x8}
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Unification. The primitive bind 
operation

� bind(ES, <v>) binds all variables in the 
equivalence set ES to <v>. 
� Example: bind({x7, x8}, name(a:x2)) 

� bind(ES1,ES2) merges the equivalence set ES1
with the equivalence set ES2.
� Example: bind({x3, x4, x5}, {x6}) 
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The Unification Algorithm: unify(x,y)
1. If x is in ESx and y is in ESy, then do bind(ESx,ESy). 
2. If x is in ESx and y is determined, then do bind(ESx, y).
3. If y is in ESy and x is determined, then do bind(ESy, x).
4. If 

1. x is bound to l(l1:x1,…, ln:xn) and y is bound to l’(l’1:y1,…, l’m:ym) 
with l � l’ or 

2. {l1, . . . , ln} � {l’1, . . . , l’m }, 

then raise a failure exception.
5. If x is bound to l(l1:x1,…, ln:xn) and y is bound to 

l(l1:y1,…, ln:yn), then for i from 1 to n do unify(xi, yi).
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Handling Cycles

� The above algorithm does not handle 
unification of partial values with cycles. 

� Example: 
� The store contains x = f(a:x) and y = f(a:y). 
� Calling unify(x, y) results in the recursive call 

unify(x, y), …
� The algorithm loops forever! 

� However x and y have exactly the same 
structure! 
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The New Unification Algorithm: unify’(x,y)

� Let M be an empty table (initially) to be used 
for memoization.

� Call unify’(x, y).
� Where unify’(x, y) is: 

� If (x, y) � M, then we are done.
� Otherwise, insert (x, y) in M and then do the 

original algorithm for unify(x, y), in which the 
recursive calls to unify are replaced by calls to 
unify’.
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Displaying cyclic structures

� Example: rational trees (section 12.3.1) The graph X=foo(X)
represents the tree X=foo(foo(foo(...))). 

declare X

X = ’|’(a ’|’(b X))  % or X = a | b | X

{Browse X}
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Entailment (the == operation)

� It returns the value true if the graphs starting 
from the nodes of X and Y have the same 
structure (it is called also structure equality).

� It returns the value false if the graphs have 
different structure, or some pairwise
corresponding nodes have different values.

� It blocks when it arrives at pairwise
corresponding nodes that are different, but at 
least one of them is unbound.
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Entailment (example)
� Entailment check/test never do any binding.
� declare
L1=[1 2]

L2=’|’(1 ’|’(2 nil))
L3=[1 3]
{Browse L1==L2} 
{Browse L1==L3} 

� declare
L1=[1]
L2=[X]
{Browse L1==L2} 

� % blocks as X is unbound
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Summary

� Programming language definition: syntax, semantics
� CFG, EBNF, ambiguity

� Data structures
� simple: integers, floats, literals
� compound: records, tuples, lists

� Kernel language
� linguistic abstraction
� data types  
� variables and partial values  
� statements and expressions (next lecture)
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Lab Session 0

� Wed 24th August 2007
� Time : 3-6pm (choose 1-hr slot)
� Venue : -
� Deadline : 28th August 2007 5pm
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Reading suggestions

� From [van Roy,Haridi; 2004]
� Chapter 2, Sections 2.1.1-2.3.5
� Appendices B, C
� Exercises 2.9.1-2.9.3


