Programming Language Concepts, CS2104 Lecture 4

Higher-Order Programming

Reminder of last lecture

- Kernel language
- linguistic abstraction
- data types
- variables and partial values
- statements and expressions
- Kernel language semantics
- Use operational semantics
- Aid programmer in reasoning and understanding
- Abstract machine model without details about registers and explicit memory address
- Aid implementer to do an efficient execution on a real machine

Overview

- Computing with procedures
- lexical scoping
- closures
- procedures as values
- procedure call
- Higher-Order Programming
- proc. abstraction
- lazy arguments
- genericity
- loop abstraction
- folding

Procedures

- Defining procedures
- how to handle external references?
- which variables matter?
- Calling procedures
- what do the variables refer to?
- how to pass parameters?
- how about external references?
- where to continue execution?

Identifiers in Procedures

$$
\begin{aligned}
P= & \operatorname{proc}\{\$ X Y\} \\
& \text { if } X>Y \text { then } Z=1 \text { else } Z=0 \text { end } \\
& \text { end }
\end{aligned}
$$

- p captures the declared procedure
- x and y are called (formal) parameters
- z is called an external reference

Free and Bound Identifiers

local Z in
if $X>Y$ then $Z=1$ else $Z=0$ end
end

- x and y are free (variable) identifiers in this statement
- z is a bound (variable) identifier in this statement

Free and Bound Identifiers

Declaration Occurrence

- x and y are free variable identifiers in this statement (declared outside)
- z is a bound variable identifier in this statement (declared inside)

Free and Bound Occurrences

- An occurrence of x is bound, if it is inside the body of either local, proc or case.

```
local X in ...X... end
proc {$ ...X...} in ...X... end
case Y of f(X) then ...X... end
```

- An occurrence of x is free in a statement, if it is not a bound occurrence.

Free Identifiers and Free Occurrences

- Free occurrences can only exist in incomplete program fragments, i.e., statements that cannot run.
- In a running program, it is always true that every identifier occurrence is bound. That is it is in closed-form.

Free Identifiers and Free Occurrences

$$
\begin{aligned}
& A 1=15 \\
& A 2=22 \\
& B=A 1+A 2
\end{aligned}
$$

The identifiers occurrences A1, A2, and B, are free.
This statement cannot be run.

Free Identifiers and Free Occurrences

$$
\begin{aligned}
& \text { local A1 A2 in } \\
& \text { A1 }=15 \\
& \text { A } 2=22 \\
& B=A 1+A 2 \\
& \text { end }
\end{aligned}
$$

- The identifier occurrences A1 and A2 are bound and the occurrence B is free.
- This statement still cannot be run.

Free Identifiers and Free Occurrences

```
local B in
    local A1 A2 in
        A1=15
        A2=22
        B=A1+A2
    end
    {Browse B}
end
```

- This is in closed-form since it has no free identifier occurrences.
- It can be executed!

Procedures

proc \{Max X Y ?Z\} \% "?" is just a comment
if $X>=Y$ then $Z=X$ else $Z=Y$ end end
\{Max 1522 C$\}$

- When max is called, the identifiers x, y, and z are bound to 15,22 , and the unbound variable referenced by c.
- Can this code be executed?

Procedures.

- No, because max and c are free identifiers!

```
local Max C in
    proc {Max X Y ?Z}
        if }X>=Y then Z=X else Z=Y en
    end
    {Max 15 22 C}
    {Browse C}
end
```


Procedures with external references

```
proc {LB X ?Z}
    if }X>=Y\mathrm{ then }Z=X else Z=Y en
end
```

- The identifier y is not one of the procedure arguments.
- Where does y come from? The value of y when the procedure is defined.
- This is a consequence of static scoping.

Procedures with external references

```
local Y LB in
    Y=10
    proc {LB X ?Z}
    if }X>=Y then Z=X else Z=Y en
    end
    local Y=3 Z1 in
        {LB 5 Z1}
        end
end
```

- Call $\{\mathrm{LB} 5 \mathrm{Z}\}$ bind z to 10 .
- Binding of $Y=3$ when LB is called is ignored.
- Binding of $Y=10$ when the procedure is defined is important.

Lexical Scoping or Static Scoping

- The meaning of an identifier like x is determined by the innermost local statement that declares x .
- The area of the program where \times keeps this meaning is called the scope of x .
- We can find out the scope of an identifier by inspecting the text of the program.
- This scoping rule is called lexical scoping or static scoping.

Lexical Scoping or Static Scoping

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { local } X \text { in } \\
\begin{array}{l}
X=15
\end{array} \\
\left.\begin{array}{l}
X=20 \\
\quad\{\text { Browse } X\}
\end{array}\right\} E_{2}=\left\{X \rightarrow x_{2}\right\}
\end{array}\right\} E_{1}=\left\{X \rightarrow X_{1}\right\} \\
& \text { end } \\
& \text { \{Browse } X\} \\
& \text { end }
\end{aligned}
$$

- There is just one identifier, x, but at different points during the execution, it refers to different variables (x_{1} and x_{2}).

Lexical Scoping

local Z in

$$
\mathrm{Z}=1
$$

proc $\{P \mathrm{X} \mathrm{Y}\} \mathrm{Y}=\mathrm{X}+\mathrm{Z}$ end
end

- A procedure value is often called a closure because it contains an environment as well as a procedure definition.

Dynamic versus Static Scoping

- Static scope.
- The variable corresponding to an identifier occurrence is the one defined in the textually innermost declaration surrounding the occurrence in the source program.
- Dynamic scope.
- The variable corresponding to an identifier occurrence is the one in the most-recent declaration seen during the execution leading up to the current statement.

Dynamic scoping versus static scoping

```
local P Q in
```

 proc \{Q \(X\}\) \{Browse stat(X)\} end
 proc \(\{P \mathrm{X}\}\) \{Q \(X\}\) end
 local \(Q\) in
 \(\operatorname{proc}\{Q X\}\) \{Browse \(d y n(X)\}\) end
 \{P hello\}
 end
 end

- What should this display, stat (hello) or dyn (hello)?
- Static scoping says that it will display stat (hello), because P uses the version of Q that exists at P's definition.

Contextual Environment

- When defining procedure, construct

contextual environment

- maps all external references...
- ...to values at the time of definition
- Procedure definition creates a closure
a pair of procedure and contextual environment
- this closure is written to store

Example of Contextual Environment

```
local Inc in
```

 local \(Z=1\) in
 proc \(\{\operatorname{Inc} X Y\}\)
 local Y in
$\quad\{\operatorname{Inc} 2 Y\}$
\{Browse Y\}
end
end
local Z = 2 in
local Y in
\{Inc 2 Y \}
\{Browse Y\}
end
end

Closure for

$$
\{\operatorname{Inc} X Y\}
$$

has the mapping

$$
\{Z \rightarrow 1\}
$$

based on where it was defined.

Procedure Declaration

- Semantic statement is

$$
\left(\operatorname{proc}\left\{\langle\mathrm{x}\rangle\langle\mathrm{y}\rangle_{1} \ldots\langle\mathrm{y}\rangle_{n}\right\}\langle\mathrm{s}\rangle \text { end, } E\right. \text {) }
$$

- Formal parameters $\quad\langle y\rangle_{1}, \ldots,\langle y\rangle_{n}$
- External references $\langle z\rangle_{1}, \ldots,\langle z\rangle_{m}$
- Contextual environment

$$
C E=E \mid\left\{\langle\mathrm{z}\rangle_{1}, \ldots,\langle\mathrm{z}\rangle_{m}\right\}
$$

Procedure Declaration

- Semantic statement is (proc $\left\{\langle\mathrm{x}\rangle\langle\mathrm{y}\rangle_{1} \ldots\langle\mathrm{y}\rangle_{n}\right\}\langle\mathrm{s}\rangle$ end, E)
with $E(\langle\mathrm{x}\rangle)=x$
- Create procedure value in the store and bind it to x
(proc $\left\{\$\langle\mathrm{y}\rangle_{1} \ldots\langle\mathrm{y}\rangle_{n}\right\}\langle\mathrm{s}\rangle$ end,

$$
\left.E \mid\left\{\langle\mathbf{Z}\rangle_{1}, \ldots,\langle\mathbf{Z}\rangle_{m}\right\}\right)
$$

Execution of Procedure Call

- Semantic statement is

$$
\left(\left\{\langle x\rangle\langle y\rangle_{1} \ldots\langle y\rangle_{n}\right\}, E\right)
$$

- If $\langle x\rangle$ is not bound, then
- suspend the execution
- If $E(\langle\mathrm{x}\rangle)$ is not a procedure value, then
- raise an error
- If $E(\langle\mathrm{x}\rangle)$ is a procedure value, but with different number of arguments $(\neq n)$, then
- raise an error

Procedure Call

- If semantic statement is

$$
\left(\left\{\langle x\rangle\langle y\rangle_{1} \ldots\langle y\rangle_{n}\right\}, E\right)
$$

with

$$
E(\langle\mathrm{x}\rangle)=\left(\operatorname{proc}\left\{\$\langle\mathrm{w}\rangle_{1} \ldots\langle\mathrm{w}\rangle_{n}\right\}\langle\mathrm{s}\rangle \text { end }, C E\right)
$$

then push

$$
\left(\langle\mathrm{s}\rangle, C E+\left\{\langle\mathrm{w}\rangle_{1} \rightarrow E\left(\langle\mathrm{y}\rangle_{1}\right), \ldots,\langle\mathrm{w}\rangle_{n} \rightarrow E\left(\langle\mathrm{y}\rangle_{n}\right)\right\}\right)
$$

Executing a Procedure Call

- If the activation condition " $E(\langle\mathrm{x}\rangle)$ is determined" is true - if $E\left(\langle\mathrm{x}\rangle\right.$) equals to (proc $\left\{\$\langle\mathrm{w}\rangle_{1} \ldots\langle\mathrm{w}\rangle_{n}\right\}\langle\mathrm{s}\rangle$ end, $C E$)

Summary so far

- Procedure values
- go to store
- combine procedure body and contextual environment
- contextual environment defines external references
- contextual environment is defined by lexical scoping
- Procedure call
- checks for the right type
- passes arguments by environments
- contextual environment for external references

Discussion

- Procedures take the values upon definition.
- Application invokes these values.
- Not possible in Java, C, C ${ }^{++}$
- procedure/function/method just code
- environment is lacking
- Java needs an object to do this
- one of the most powerful concepts in computer science
- pioneered in Lisp/Algol 68

Summary so far

- Procedures are values as anything else!
- Allow breathtaking programming techniques
- With environments, it is easy to understand what is the value for each identifier

Higher-Order Programming

Higher-Order Programming

- Higher-order programming = the set of programming techniques that are possible with procedure values (lexically-scoped closures)
- higher-order programming is the foundation of secure data abstraction component-based programming and object-oriented programming

Higher-order Programming

- Use of procedures as first-class values
- can be passed as arguments
- can be constructed at runtime
- can be stored in data structures
- procedures are simply values!
- Will present a number of programming techniques using this idea

Remember (I)

- Functions are procedures
- Special syntax, nested syntax, expression syntax
- They have one argument to capture its result.
- Example:

```
    fun {F X}
        fun {$ Y} X+Y end
    end
```

- A function that returns a function that is specialized on x
- Add result parameters to both $\{\mathrm{F} \mathrm{X}\}$ and $\{\$ \mathrm{Y}\}$ to convert to procedures.

Remember (II)

```
declare
fun {F X}
    fun {$ Y} X+Y end
end
{Browse F}
G={F 1}
{Browse G}
{Browse {G 2}}
- \(F\) is a function of one argument, which corresponds to a procedure having two arguments \(\rightarrow\langle\mathrm{P} / 2 \mathrm{~F}\rangle\)
- G is an unnamed function
\(\rightarrow<\mathrm{P} / 2>\)
- \{G Y\} returns 1+Y
\{Browse \{G 2\}\}
\(\rightarrow 3\)
```


Remember (III)

- fun $\{F X\}$
fun $\{\$ Y\} X+Y$ end

Type : <Num> -> (<Num> -> <Num>)

- fun $\{F X Y\}$

$$
X+Y
$$

end
Type: (<Num>, <Num>) -> <Num>

Higher-Order Programming

- Basic operations:
- Procedural abstraction: the ability to convert any statement into a procedure value
- Genericity: the ability to pass procedure values as arguments to a procedure call
- Instantiation: the ability to return procedure values as results from a procedure call
- Embedding: the ability to put procedure values in data structures

Higher-Order Programming

- Control abstractions
- The ability to define control constructs
- Integer and list loops, accumulator loops, folding a list (left and right)

Procedural Abstraction

- Procedural abstraction is the ability to convert any statement into a procedure value

Procedural Abstraction

- A procedure value is usually called a closure, or more precisely, a lexically-scoped closure
- A procedure value is a pair: it combines the procedure code with the contextual environment
- Basic scheme:
- Consider any statement <s>
- Convert it into a procedure value:

$$
P=\operatorname{proc}\{\$\}<s>\text { end }
$$

- Executing \{P\} has exactly the same effect as executing <s>

Same Holds for Expressions

- Basic scheme:
- Consider any expression <E>
- Convert it into a function value:
$\mathrm{F}=\mathrm{fun}\{\$\}<\mathrm{E}>$ end
- Executing $X=\{F\}$ has exactly the same effect as executing $\mathrm{X}=\mathrm{E}$

```
The Arguments are Evaluated
- x is evaluated as \(3+1\)
\(\rightarrow 4\)
\(\rightarrow 2\)
```

declare $\mathrm{Z}=3$
fun $\{F X\}$
\{Browse X\} 2
end
$Y=\left\{\begin{array}{ll}\mathrm{F} & \mathrm{Z}+1\end{array}\right\}$
\{Browse Y\}
declare $\mathrm{Z}=3$
fun $\{F X\}$
\{Browse X\}
\{Browse $\{X\}\} 2$
end
$Y=\{F$ fun $\{\$\} Z+1$ end $\}$
\{Browse Y\}

- x is evaluated as function value fun $\{\$\} \quad Z+1$ end
$\rightarrow\langle\mathrm{P} / 1\rangle$
$\rightarrow 4 \quad(3+1$ is evaluated) $\rightarrow 2$

Example

- Suppose we want to define the operator andthen ($\& \&$ in Java) as a function, namely <expr1> andthen <expr2> is false if <expr1> is false, avoiding the evaluation of <expr2>
(Exercise 2.8.6, page 109)
- Attempt:

```
fun {AndThen B1 B2}
    if B1 then B2 else false end
end
if {AndThen X>0 Y>0} then ... else ...
```


Example

```
if {AndThen X>0 Y>0} then ... else ...
```

- Does not work because both $\mathrm{x}>0$ and $\mathrm{y}>0$ are evaluated
- So, even if $x>0$ is false, y should be bound in order to evaluate the expression $\mathrm{y}>0$!

Example

```
declare
fun {AndThen B1 B2}
    if B1 then B2 else false end
end
X=~3
Y
if {AndThen X>0 Y>0} then
        {Browse 1}
else
        {Browse 2}
end
```

- Display nothing since Y is unbound!
- When called, all function's arguments are evaluated, unless it is procedure value.

Solution: Use Procedural Abstractions

```
fun {AndThen B1 B2}
    if {B1} then {B2} else false end
end
if {AndThen
    (fun{$} X>0 end)
    (fun{$} Y>0 end) }
then ... else ... end
```


Example. Solution

```
declare
```

```
fun {AndThen BP1 BP2}
    if {BP1} then {BP2} else false end
end
```

$X=\sim 3$
Y
if $\{$ AndThen
fun\{\$\} $X>0$ end
fun $\{\$\} \quad Y>0$ end $\}$
then \{Browse 1\} else \{Browse 2$\}$ end

- Display 2 (even if Y is unbound)

Genericity/ Parameterization

- To make a function generic is to let any specific entity (i.e. operation or value) in the function body become an argument.
- The entity is abstracted out of the function body.

Genericity

- Replace specific entities (zero 0 and addition +) by function arguments

```
fun {SumList Ls}
    case Ls
    of nil then 0
    [] X|Lr then X+{SumList Lr}
    end
end
```


Genericity

```
fun {SumList L}
    case L of
        nil then 0
        [] X|L2 then X+{SumList L2}
    end
end
```

 \(\Omega\)
 fun $\{F o l d R ~ L E ~ U\}$
case L of
nil then U
[] X|L2 then $\{F \operatorname{X}$ \{FoldR L2 F U\}\}
end
end

Types of Functions

Genericity sumList

fun $\{$ SumList Ls \}
$\{$ FoldR Ls (fun $\{\$ \mathrm{X} Y\} \mathrm{X}+\mathrm{Y}$ end) 0$\}$
end
\{Browse \{SumList [1 2234$]\}\}$

Genericity ProductList

fun $\{$ ProductList Ls\}
\{FoldR Ls (fun \{\$ X Y\} X*Y end) 1 \}
end
\{Browse \{ProductList [1 2 3 4]\}\}

Genericity some

List Mapping

- Mapping
- each element recursively
- calling function for each element
- Construct a new list from the input list
- Separate function calling by passing function as argument

Other Generic Functions: Map

```
fun {Map Xs F}
    case Xs of
            nil then nil
    [] X|Xr then {F X}|{Map Xr F}
    end
end
```

\{Browse \{Map [lll 123$]$
fun $\{\$ X\} X * X$ end $\}\} \%\left[\begin{array}{lll}1 & 4 & 9\end{array}\right]$

Other Generic Functions: filter

```
fun {Filter Xs P}
    case Xs of
        nil then nil
    [] X|Xr then
        if {P X} then X|{Filter Xr P}
        else {Filter Xr P} end
    end
End
{Browse {Filter [1 2 3] IsOdd}} %[1 3]
```


Types of Functions

```
fun {Map Xs F}
...
Map :: {(List A) (A->B)} -> List B
```

```
fun {Filter Xs P}
Filter :: {(List A) (A->Bool)} -> List A
```


Instantiation

- Instantiation: ability to return procedure values as results from a procedure call
- A factory of specialized functions

```
declare
fun {Add X}
    fun {$ Y} X+Y end
end
Inc = {Add 1}
{Browse {Inc 5}} % shows 6
```


Embedding

- Embedding is when procedure values are put in data structures
- Embedding has many uses:
- Modules: that groups together a set of related operations (procedures)
- Software components : takes a set of modules as its arguments and returns a new module. Can be viewed as specifying a new module in terms of the modules it needs.

Embedding. Example

```
declare Algebra
local
    proc {Add X Y ?Z} Z=X+Y end
    proc {Mul X Y ?Z} Z=X*Y end
in
    Algebra=op(add:Add mul:Mul)
end
A=2
B=3
{Browse {Algebra.add A B}}
{Browse {Algebra.mul A B}}
```

- Add and Mul are procedures embedded in a data structure

Control Construct - For Loop

- Integer loop: repeats an operation with a sequence of integers

```
proc {For I J P}
    if I > J then skip
    else {P I} {For I+1 J P} end
end
{For 1 10 Browse}
        For :: {Int Int (Int-> ())} -> ()
```

- Linguistic abstraction for integer loops

```
for I in 1..10 do {Browse I} end
```


Control Construct - ForAll Loop

- List loop: repeats an operation for all elements of a list proc \{ForAll Xs P\} case Xs of
nil then skip
[] X|Xr then $\{P \mathrm{X}\}$ \{ForAll Xr P$\}$
end
end

```
ForAll :: {(List A) A->()} -> ()
```

\{ForAll [a b c d] proc\{\$ I\} \{Browse I\} end\}

- Linguistic abstraction for list loops

```
for I in [a b c d] do
    {Browse I}
end
```


Control Construct - Pipe/ Compose

- Can compose two functions together

```
    fun {Compose P1 P2}
    fun {$ X} {P1 {P2 X}} end
    end
\[
\text { Compose : : }\{(\mathrm{B}->\mathrm{C}) \quad(\mathrm{A}->\mathrm{B})\}->(\mathrm{A}->\mathrm{C})
\]
```

- Similar to pipe command used in Unix

$$
P 2 \mid P 1
$$

Folding Lists

- Consider computing the sum of list elements
- ...or the product
- ...or all elements appended to a list
- ...or the maximum
- ...or number of elements, etc
- What do they have in common?
- Example: sumList

SumList/Length

```
fun \{SumList Xs \}
    case Xs of
    nil then 0
    [] X|Xr then \(X+\{S u m L i s t ~ X r\} ~ e n d ~\)
end
```

fun $\{$ Length Xs \}
case Xs of
nil then 0
[] X|Xr then $1+\{$ Length $X r\}$ end
end

Right-Folding

■ Right-folding \{FoldR $\left[x_{1} \ldots x_{n}\right]$ F S\}

$$
\left\{\begin{array}{lllllllll}
\{ & x_{1} & \{F & x_{2} & \ldots . & \{F & x_{n} & S
\end{array}\right\}
$$

or

$$
x_{1} \otimes_{\mathrm{F}}\left(x_{2} \otimes_{\mathrm{F}}\left(\ldots \quad\left(x_{n} \otimes_{\text {right }}^{\otimes_{\mathrm{F}} S}\right) \ldots .\right)\right)
$$

```
FoldR
```

```
fun {FoldR Xs F S}
    case Xs
    of nil then S
    [] X|Xr then {F X {FoldR Xr F S}} end
end
```

- Not tail-recursive
- Elements folded in order

Instances of FoldR

fun \{SumList Xs\}

\{FoldR Xs (fun $\{\$ \mathrm{X} \mathrm{R}\} \mathrm{X}+\mathrm{R}$ end) 0$\}$ end

fun $\{$ Length Xs $\}$
$\{F o l d R$ Xs (fun $\{\$ \mathrm{X} R\} 1+\mathrm{R}$ end) 0$\}$ end

sumListT: Tail-Recursive

```
fun {SumListT Xs N}
        case Xs of
            nil then N
    [] X|Xr then {SumListT Xr N+X}
    end
end
{SumListT Xs 0}
```

- Question:
- How is this computation different from SumList?

Computation of Original SumList

$\left.\begin{array}{ll}\left\{\text { SumList }\left[\begin{array}{ll}2 & 5 \\ 7\end{array}\right]\right\} & = \\ 2+\left\{\text { SumList }\left[\begin{array}{c}5 \\ 7\end{array}\right]\right.\end{array}\right\}=$

How Tail-Recursive sumListt Compute?

\{SumListT [2 5 7] 0\}
\{SumListT [5 7] 0+2\}
\{SumListT [5 7] 2\}
\{SumListT [7] 2+5\}
\{SumListT [7] 7\}
\{SumListT [] 7+7\}
\{SumListT [] 14\}
14

SumListt Slightly Rewritten...

$\left.\begin{array}{llllll}\{\text { SumListT } & {\left[\begin{array}{llllll}2 & 5 & 7\end{array}\right]} & 0\end{array}\right\}$

where F is

fun $\{F X Y\} X+Y$ end

Left-Folding

Left-folding \{FoldL $\left[x_{1} \ldots x_{n}\right]$ F S\}

$$
\left.\left.\left\{\begin{array}{llllllll}
\{F & \ldots & \{F & \{F & S & x_{1}
\end{array}\right\} x_{2}\right\} \ldots x_{n}\right\}
$$

or

$$
\left(\ldots\left(\left(S \otimes_{\mathrm{F}} x_{1}\right) \quad \otimes_{\mathrm{F}} x_{2}\right) \ldots \otimes_{\mathrm{F}} x_{n}\right)
$$

left is here!

FoldL and SumListT

fun $\{$ SumListT Xs \}
$\{$ FoldL Xs (fun $\{P l u s \mathrm{X} Y\} \mathrm{X}+\mathrm{Y}$ end) 0$\}$
end

Properties of FoldL

- Tail recursive
- First element of list folded first...
- that is evaluated first.

FoldL or FoldR?

- FoldL and FoldR can be transformed to each other, if function F_{F} is associative:

$$
\{F X\{F Y Z\}\}==\{F\{F X Y\} Z\}
$$

Other conditions possible.

- Otherwise: choose FoldL or FoldR
a depending on required order of result

Example: Appending Lists

- Given: list of lists

$$
\left.\left[\begin{array}{lll}
{[\mathrm{a}} & \mathrm{b}] & {[1} \\
1 & 2
\end{array}\right][\mathrm{e}][\mathrm{g}]\right] \Rightarrow\left[\begin{array}{llllll}
\mathrm{a} & \mathrm{~b} & 1 & 2 & \mathrm{e} & \mathrm{~g}
\end{array}\right]
$$

- Task: compute all elements in one list in order
- Solution:

```
fun {AppAll Xs}
    {FoldR Xs Append nil}
```

end

- Question: What would happen with FoldL?

What would happen with Foldz?

fun $\{$ AppAllLeft Xs \}
\{FoldL Xs Append nil\}
end
$\left\{A p p A l l L e f t\left[\begin{array}{lll}\text { a } & \text { b] [1 } & \text { 2] [e] [g]]\} }\end{array}\right.\right.$
$\{$ FoldL [[a b] [1 2] [e] [g]] Append nil\}
\{FoldL [[1 2] [e] [g]] Append \{Append nil [a b]\}\}= ...

How Does Appallleft Compute?

Summary so far

- Many operations can be partitioned into
- pattern implementing
- recursion
- application of operations
- operations to be applied
- Typical patterns
- Map
- FoldL/FoldR
- Filter
- Sort
mapping elements
folding elements
filtering elements
sorting elements

Goal

- Programming as an engineering/scientific discipline
- An engineer can
- understand abstract machine/properties
- apply programming techniques
- develop programs with suitable techniques

Summary

- Computing with procedures
- lexical scoping
- closures
- procedures as values
- procedure call
- Higher-Order Programming
- proc. abstraction
- lazy arguments
- genericity
- loop abstraction
- folding

Reading suggestions

- Chapter 1 and 3, Sections 1.9, 3.6 from [van Roy,Haridi; 2004]
- Exercises 2.9.1, 2.9.2, 1.18.6 from [van Roy,Haridi; 2004]

Thank you for your attention!

Simple Example

local P in local Y in local Z in

$\mathrm{Z}=1$
proc $\{P X\} Y=X$ end
\{P Z\}
end end end

- We shall reason that x, y and z will be bound to 1

Simple Example

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
\text { local } P \quad Y \quad Z \text { in } \\
Z=1 \\
\quad \operatorname{proc}\{P \quad X\} \quad Y=X \text { end } \\
\{P \quad Z\}
\end{array}\right.\right. \\
& \text { end, } \varnothing \text {) }] \text {, } \\
& \varnothing \text {) }
\end{aligned}
$$

- Initial execution state

Simple Example

```
([(local P Y Z in
```

$$
Z=1
$$

$$
\operatorname{proc}\{P X\} Y=X \text { end }
$$

$$
\left\{\begin{array}{ll}
\mathrm{P}
\end{array}\right\}
$$

end, \varnothing)],
\varnothing)

- Statement

Simple Example

([(local P Y Z in

$$
Z=1
$$

proc $\{P X\} Y=X$ end
\{P Z \}
end, \varnothing)],
\varnothing)

- Empty environment

Simple Example

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
(\text { local } P \quad Y \quad Z \text { in } \\
Z=1
\end{array}\right.\right. \\
& \quad \text { proc }\{P \quad X\} \quad Y=X \text { end } \\
& \{P \quad Z\}
\end{aligned} \quad \begin{aligned}
& \text { end, } \varnothing)] \\
& \varnothing \text {) }
\end{aligned}
$$

- Semantic statement

Simple Example

```
([(local P Y Z in
```

$$
Z=1
$$

$$
\operatorname{proc}\{P X\} Y=X \text { end }
$$

$$
\begin{cases}P & Z\end{cases}
$$

$$
\text { end, } \varnothing \text {)], }
$$

$\varnothing)$

- Semantic stack

Simple Example

([(local P Y Z in

$$
Z=1
$$

proc $\{P X\} Y=X$ end
\{P Z \}
end, \varnothing)],
\varnothing)

- Empty store

Simple Example: local

([(local P Y Z in

$$
Z=1
$$

$$
\operatorname{proc}\{P \quad X\} Y=X \text { end }
$$

$$
\left\{\begin{array}{ll}
\mathrm{P} & \mathrm{Z}
\end{array}\right\}
$$

end, \varnothing)],
\varnothing)

- Create new store variables
- Extend the environment

Simple Example

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
(Z=1 & \\
& \text { proc }\{P X\} \\
& Y=X \text { end } \\
\{P Z\}, & \{P \rightarrow p, Y \rightarrow y, Z \rightarrow Z\})] \\
\{p, y, Z\}) &
\end{array}\right.\right.
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
(Z=1 \\
\\
\quad \operatorname{proc}\{\mathrm{P} X\} \\
\quad \mathrm{Y}=\mathrm{X} \text { end } \\
\quad\{\mathrm{P} Z\},
\end{array} \quad\{\mathrm{P} \rightarrow p, \mathrm{Y} \rightarrow y, \mathrm{Z} \rightarrow z\}\right)\right] \\
& \{p, y, z\})
\end{aligned}
$$

- Split sequential composition

Simple Example

$$
\begin{array}{ll}
\left(\left[\begin{array}{ll}
(\mathrm{z}=1, & \{\mathrm{P} \rightarrow p, \mathrm{y} \rightarrow y, \mathrm{z} \rightarrow z\}), \\
& (\text { proc }\{\mathrm{P} \mathrm{X}\} \\
\mathrm{Y}=\mathrm{X} \text { end }
\end{array}\right.\right. \\
\quad\{\mathrm{P} \mathrm{Z}\}, & \{\mathrm{P} \rightarrow p, \mathrm{Y} \rightarrow y, \mathrm{z} \rightarrow z\})], \\
\{p, y, z\}) &
\end{array}
$$

- Split sequential composition

Simple Example

($[(\operatorname{proc}\{P X\} \quad Y=X$ end

$$
\left.\left.\begin{array}{c}
\{\mathrm{P} \quad \mathrm{Z}\}, \\
\{p, y, z=1\})
\end{array} \quad\{\mathrm{P} \rightarrow p, \mathrm{Y} \rightarrow y, \mathrm{z} \rightarrow z\}\right)\right],
$$

- Variable-value assignment

Simple Example

([(proc $\{\mathrm{P} X\} Y=\mathrm{X}$ end, $\{\mathrm{P} \rightarrow \mathrm{p}, \mathrm{Y} \rightarrow \mathrm{y}, \mathrm{z} \rightarrow \mathrm{z}\}$), ($\left\{\begin{array}{l}\mathrm{P}\end{array}\right\}$,

$$
\{\mathrm{P} \rightarrow p, \mathrm{Y} \rightarrow y, \mathrm{z} \rightarrow z\})]
$$

$$
\{p, y, z=1\})
$$

- Split sequential composition

Simple Example

($[$ ($\mathrm{proc}\{\mathrm{P} \mathrm{X}\} \mathrm{Y}=\mathrm{x}$ end, $\{\mathrm{P} \rightarrow \mathrm{p}, \mathrm{y} \rightarrow \mathrm{y}, \mathrm{z} \rightarrow \mathrm{z}\}$),
($\left\{\begin{array}{ll}\mathrm{P} & \mathrm{Z}\end{array}\right.$,

$$
\{\mathrm{P} \rightarrow p, \mathrm{Y} \rightarrow y, \mathrm{z} \rightarrow z\})]
$$

$\{p, y, z=1\})$

- Procedure definition
- external reference Y
- formal argument x
- Contextual environment $\{\mathrm{y} \rightarrow \mathrm{y}\}$
- Write procedure value to store

Simple Example

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
(\{\mathrm{P} & \mathrm{Z}\},
\end{array} \quad\{\mathrm{P} \rightarrow p, \mathrm{Y} \rightarrow y, \mathrm{Z} \rightarrow z\}\right)\right] \\
& \{p=(\operatorname{proc} \quad\{\$ \mathbf{x}\} \quad \mathbf{Y}=\mathbf{X} \text { end, }\{\mathrm{Y} \rightarrow y\}) \\
& y, z=1\})
\end{aligned}
$$

- Procedure call: use p
- Note: p is a value like any other variable. It is the semantic statement (proc $\{\$ \mathbf{X}\} \mathbf{Y}=\mathbf{X}$ end, $\{\mathrm{Y} \rightarrow y\}$)
- Environment
- start from

$$
\{Y \rightarrow y\}
$$

- adjoin
$\{\mathrm{X} \rightarrow z\}$

Simple Example

$$
\begin{aligned}
& ([(\mathrm{Y}=\mathrm{x}, \quad\{\mathrm{Y} \rightarrow y, \mathrm{x} \rightarrow z\})], \\
& \{p=(\operatorname{proc} \quad\{\$ \mathbf{X}\} \quad \mathbf{Y}=\mathbf{x} \text { end, }\{\mathrm{Y} \rightarrow y\}), \\
& y, z=1\})
\end{aligned}
$$

- Variable-variable assignment
- Variable for Y is y
- Variable for x is z

Simple Example

([],

$$
\{p=(\operatorname{proc}\{\$ \mathbf{x}\} \mathbf{Y}=\mathbf{x} \text { end, }\{\mathrm{Y} \rightarrow y\}),
$$

$$
y=1, z=1\})
$$

- Voila!
- The semantic stack is in the run-time state terminated, since the stack is empty

