
7 Sep 2007 CS2104, Lecture 4 1

Programming Language Concepts,
CS2104
Lecture 4

Higher-Order Programming

7 Sep 2007 CS2104, Lecture 4 2

Reminder of last lecture
� Kernel language

� linguistic abstraction
� data types
� variables and partial values
� statements and expressions

� Kernel language semantics
� Use operational semantics

� Aid programmer in reasoning and understanding

� Abstract machine model without details about registers and
explicit memory address
� Aid implementer to do an efficient execution on a real machine

7 Sep 2007 CS2104, Lecture 4 3

Overview
� Computing with procedures

� lexical scoping
� closures
� procedures as values
� procedure call

� Higher-Order Programming
� proc. abstraction
� lazy arguments
� genericity
� loop abstraction
� folding

7 Sep 2007 CS2104, Lecture 4 4

Procedures

� Defining procedures
� how to handle external references?
� which variables matter?

� Calling procedures
� what do the variables refer to?
� how to pass parameters?
� how about external references?
� where to continue execution?

7 Sep 2007 CS2104, Lecture 4 5

Identifiers in Procedures

P = proc {$ X Y}

if X>Y then Z=1 else Z=0 end

end

� P captures the declared procedure
� X and Y are called (formal) parameters
� Z is called an external reference

7 Sep 2007 CS2104, Lecture 4 6

Free and Bound Identifiers

local Z in
if X>Y then Z=1 else Z=0 end

end

� X and Y are free (variable) identifiers in this
statement

� Z is a bound (variable) identifier in this
statement

7 Sep 2007 CS2104, Lecture 4 7

Free and Bound Identifiers

local Z in
if X>Y then Z=1 else Z=0 end

end

� X and Y are free variable identifiers in this
statement (declared outside)

� Z is a bound variable identifier in this
statement (declared inside)

Declaration Occurrence

7 Sep 2007 CS2104, Lecture 4 8

Free and Bound Occurrences

� An occurrence of X is bound, if it is inside the
body of either local, proc or case.

local X in …X… end

proc {$ …X…} in …X… end

case Y of f(X) then …X… end

� An occurrence of X is free in a statement, if it
is not a bound occurrence.

7 Sep 2007 CS2104, Lecture 4 9

Free Identifiers and Free Occurrences

� Free occurrences can only exist in
incomplete program fragments, i.e.,
statements that cannot run.

� In a running program, it is always true that
every identifier occurrence is bound. That is it
is in closed-form.

7 Sep 2007 CS2104, Lecture 4 10

Free Identifiers and Free Occurrences

A1=15

A2=22

B=A1+A2

� The identifiers occurrences A1, A2, and B, are
free.

� This statement cannot be run.

7 Sep 2007 CS2104, Lecture 4 11

Free Identifiers and Free Occurrences

local A1 A2 in

A1=15

A2=22

B=A1+A2

end

� The identifier occurrences A1 and A2 are
bound and the occurrence B is free.

� This statement still cannot be run.

7 Sep 2007 CS2104, Lecture 4 12

Free Identifiers and Free Occurrences
local B in

local A1 A2 in

A1=15

A2=22

B=A1+A2

end

{Browse B}

end

� This is in closed-form since it has no free identifier
occurrences.

� It can be executed!

7 Sep 2007 CS2104, Lecture 4 13

Procedures
proc {Max X Y ?Z} % "?" is just a comment

if X>=Y then Z=X else Z=Y end
end
{Max 15 22 C}

� When Max is called, the identifiers X, Y, and Z are
bound to 15, 22, and the unbound variable
referenced by C.

� Can this code be executed?

7 Sep 2007 CS2104, Lecture 4 14

Procedures.

� No, because Max and C are free identifiers!

local Max C in

proc {Max X Y ?Z}

if X>=Y then Z=X else Z=Y end

end

{Max 15 22 C}

{Browse C}

end

7 Sep 2007 CS2104, Lecture 4 15

Procedures with external references

proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end

� The identifier Y is not one of the procedure
arguments.

� Where does Y come from? The value of Y
when the procedure is defined.

� This is a consequence of static scoping.

7 Sep 2007 CS2104, Lecture 4 16

Procedures with external references
local Y LB in
Y=10
proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end
local Y=3 Z1 in
{LB 5 Z1}

end
end
� Call {LB 5 Z} bind Z to 10.
� Binding of Y=3 when LB is called is ignored.
� Binding of Y=10 when the procedure is defined is

important.

7 Sep 2007 CS2104, Lecture 4 17

Lexical Scoping or Static Scoping

� The meaning of an identifier like X is
determined by the innermost local statement
that declares X.

� The area of the program where X keeps this
meaning is called the scope of X.

� We can find out the scope of an identifier by
inspecting the text of the program.

� This scoping rule is called lexical scoping or
static scoping.

7 Sep 2007 CS2104, Lecture 4 18

Lexical Scoping or Static Scoping
local X in
X=15

local X in
X=20

{Browse X}

end

{Browse X}

end

� There is just one identifier, X, but at different points
during the execution, it refers to different variables (x1

and x2).

E2={XÆx2}
E1 ={XÆx1}

7 Sep 2007 CS2104, Lecture 4 19

Lexical Scoping

local Z in

Z=1

proc {P X Y} Y=X+Z end

end

� A procedure value is often called a closure
because it contains an environment as well
as a procedure definition.

7 Sep 2007 CS2104, Lecture 4 20

Dynamic versus Static Scoping

� Static scope.
� The variable corresponding to an identifier

occurrence is the one defined in the textually
innermost declaration surrounding the occurrence
in the source program.

� Dynamic scope.
� The variable corresponding to an identifier

occurrence is the one in the most-recent
declaration seen during the execution leading up
to the current statement.

7 Sep 2007 CS2104, Lecture 4 21

Dynamic scoping versus static scoping
local P Q in
proc {Q X} {Browse stat(X)} end
proc {P X} {Q X} end
local Q in
proc {Q X} {Browse dyn(X)} end
{P hello}

end
end

� What should this display, stat(hello) or dyn(hello)?
� Static scoping says that it will display stat(hello),

because P uses the version of Q that exists at P’s definition.

7 Sep 2007 CS2104, Lecture 4 22

Contextual Environment

� When defining procedure, construct
contextual environment

� maps all external references…
� …to values at the time of definition

� Procedure definition creates a closure
� pair of procedure and contextual environment
� this closure is written to store

7 Sep 2007 CS2104, Lecture 4 23

Example of Contextual Environment
local Inc in

local Z = 1 in
proc {Inc X Y} Y = X + Z end
local Y in

{Inc 2 Y}
{Browse Y}

end
end
local Z = 2 in

local Y in
{Inc 2 Y}
{Browse Y}

end
end

end

Closure for
{Inc X Y}

has the mapping
{Z� 1}

based on where it was
defined.

7 Sep 2007 CS2104, Lecture 4 24

Procedure Declaration

� Semantic statement is
(proc {¢x² ¢y²1 … ¢y²n} ¢s² end, E)

� Formal parameters ¢y²1, …, ¢y²n
� External references ¢z²1, …, ¢z²m
� Contextual environment

CE = E | {¢z²1, …, ¢z²m}

7 Sep 2007 CS2104, Lecture 4 25

Procedure Declaration

� Semantic statement is
(proc {¢x² ¢y²1 … ¢y²n} ¢s² end, E)

with E(¢x²) = x

� Create procedure value in the store and bind it
to x

(proc {$ ¢y²1 … ¢y²n} ¢s² end,
E | {¢z²1, …, ¢z²m})

7 Sep 2007 CS2104, Lecture 4 26

Execution of Procedure Call
� Semantic statement is

({¢x² ¢y²1 … ¢y²n}, E)

� If ¢x² is not bound, then
� suspend the execution

� If E(¢x²) is not a procedure value, then
� raise an error

� If E(¢x²) is a procedure value, but with different
number of arguments (� n), then
� raise an error

7 Sep 2007 CS2104, Lecture 4 27

Procedure Call

� If semantic statement is
({¢x² ¢y²1 … ¢y²n}, E)

with
E(¢x²) = (proc {$ ¢w²1… ¢w²n} ¢s² end, CE)

� then push
(¢s², CE + {¢w²1�E(¢y²1), … , ¢w²n�E(¢y²n)})

7 Sep 2007 CS2104, Lecture 4 28

Executing a Procedure Call

({¢x² ¢y²1 … ¢y²n}, E)

ST

+ V + V

� If the activation condition “E(¢x²) is determined” is true
� if E(¢x²) equals to (proc {$ ¢w²1… ¢w²n} ¢s² end, CE)

(¢s², CE + {¢w²1�E(¢y²1),
…, ¢w²n�E(¢y²n)})

ST

7 Sep 2007 CS2104, Lecture 4 29

Summary so far
� Procedure values

� go to store
� combine procedure body and contextual environment
� contextual environment defines external references
� contextual environment is defined by lexical scoping

� Procedure call
� checks for the right type
� passes arguments by environments
� contextual environment for external references

7 Sep 2007 CS2104, Lecture 4 30

Discussion

� Procedures take the values upon definition.
� Application invokes these values.
� Not possible in Java, C, C++

� procedure/function/method just code
� environment is lacking
� Java needs an object to do this
� one of the most powerful concepts in computer

science
� pioneered in Lisp/Algol 68

7 Sep 2007 CS2104, Lecture 4 31

Summary so far

� Procedures are values as anything else!
� Allow breathtaking programming techniques
� With environments, it is easy to understand

what is the value for each identifier

7 Sep 2007 CS2104, Lecture 4 32

Higher-Order Programming

7 Sep 2007 CS2104, Lecture 4 33

Higher-Order Programming

� Higher-order programming = the set of
programming techniques that are possible
with procedure values (lexically-scoped
closures)

� higher-order programming is the
foundation of secure data abstraction
component-based programming and
object-oriented programming

7 Sep 2007 CS2104, Lecture 4 34

Higher-order Programming

� Use of procedures as first-class values
� can be passed as arguments
� can be constructed at runtime
� can be stored in data structures

� procedures are simply values!
� Will present a number of programming

techniques using this idea

7 Sep 2007 CS2104, Lecture 4 35

Remember (I)

� Functions are procedures
� Special syntax, nested syntax, expression syntax
� They have one argument to capture its result.

� Example:
fun {F X}

fun {$ Y} X+Y end

end

� A function that returns a function that is
specialized on X

� Add result parameters to both {F X} and {$ Y} to
convert to procedures.

7 Sep 2007 CS2104, Lecture 4 36

Remember (II)

declare

fun {F X}

fun {$ Y} X+Y end

end

{Browse F}

G={F 1}

{Browse G}

{Browse {G 2}}

� F is a function of one
argument, which
corresponds to a procedure
having two arguments

Æ <P/2 F>

� G is an unnamed function
Æ <P/2>

� {G Y} returns 1+Y
Æ 3

7 Sep 2007 CS2104, Lecture 4 37

Remember (III)
z fun {F X}

fun {$ Y} X+Y end
end

Type : <Num> -> (<Num> -> <Num>)

z fun {F X Y}
X+Y

end

Type : (<Num>, <Num>) -> <Num>

7 Sep 2007 CS2104, Lecture 4 38

Higher-Order Programming

� Basic operations:
� Procedural abstraction: the ability to convert

any statement into a procedure value
� Genericity: the ability to pass procedure

values as arguments to a procedure call
� Instantiation: the ability to return procedure

values as results from a procedure call
� Embedding: the ability to put procedure values

in data structures

7 Sep 2007 CS2104, Lecture 4 39

Higher-Order Programming

� Control abstractions
� The ability to define control constructs
� Integer and list loops, accumulator loops,

folding a list (left and right)

7 Sep 2007 CS2104, Lecture 4 40

Procedural Abstraction

� Procedural abstraction is the ability to convert
any statement into a procedure value

¢Statement²

Normal Execution

time

P = proc{$} ¢Statement² end

{P}

Delayed Execution

time

7 Sep 2007 CS2104, Lecture 4 41

Procedural Abstraction

� A procedure value is usually called a closure,
or more precisely, a lexically-scoped closure
� A procedure value is a pair: it combines the

procedure code with the contextual environment

� Basic scheme:
� Consider any statement <s>
� Convert it into a procedure value:
P = proc {$} <s> end

� Executing {P} has exactly the same effect as
executing <s>

7 Sep 2007 CS2104, Lecture 4 42

Same Holds for Expressions

� Basic scheme:
� Consider any expression <E>
� Convert it into a function value:
F = fun {$} <E> end

� Executing X={F} has exactly the same effect as
executing X=E

7 Sep 2007 CS2104, Lecture 4 43

The Arguments are Evaluated
declare Z=3
fun {F X}

{Browse X} 2
end
Y={F Z+1}
{Browse Y}

� X is evaluated as 3+1

Æ 4

Æ 2

declare Z=3

fun {F X}

{Browse X}

{Browse {X}} 2

end

Y={F fun {$} Z+1 end}

{Browse Y}

� X is evaluated as function
value fun {$} Z+1 end

Æ <P/1>

Æ 4 (3+1 is evaluated)

Æ 2

7 Sep 2007 CS2104, Lecture 4 44

Example

� Suppose we want to define the operator
andthen (&& in Java) as a function, namely
<expr1> andthen <expr2> is false if <expr1> is
false, avoiding the evaluation of <expr2>
(Exercise 2.8.6, page 109)

� Attempt:
fun {AndThen B1 B2}

if B1 then B2 else false end

end

if {AndThen X>0 Y>0} then … else …

7 Sep 2007 CS2104, Lecture 4 45

Example

if {AndThen X>0 Y>0} then … else …

� Does not work because both X>0 and Y>0 are
evaluated

� So, even if X>0 is false, Y should be bound in
order to evaluate the expression Y>0!

7 Sep 2007 CS2104, Lecture 4 46

Example
declare

fun {AndThen B1 B2}

if B1 then B2 else false end

end

X=~3

Y

if {AndThen X>0 Y>0} then

{Browse 1}

else

{Browse 2}

end

� Display nothing since Y is unbound!
� When called, all function’s arguments are evaluated, unless it is

procedure value.

7 Sep 2007 CS2104, Lecture 4 47

Solution: Use Procedural Abstractions

fun {AndThen B1 B2}

if {B1} then {B2} else false end

end

if {AndThen

(fun{$} X>0 end)

(fun{$} Y>0 end) }

then … else … end

7 Sep 2007 CS2104, Lecture 4 48

Example. Solution
declare

fun {AndThen BP1 BP2}

if {BP1} then {BP2} else false end

end

X=~3

Y

if {AndThen

fun{$} X>0 end

fun{$} Y>0 end }

then {Browse 1} else {Browse 2} end

� Display 2 (even if Y is unbound)

7 Sep 2007 CS2104, Lecture 4 49

Genericity/ Parameterization

� To make a function generic is to let any
specific entity (i.e. operation or value) in the
function body become an argument.

� The entity is abstracted out of the function
body.

7 Sep 2007 CS2104, Lecture 4 50

Genericity

� Replace specific entities (zero 0 and addition +)
by function arguments

fun {SumList Ls}

case Ls
of nil then 0
[] X|Lr then X+{SumList Lr}

end

end

7 Sep 2007 CS2104, Lecture 4 51

Genericity
fun {SumList L}

case L of
nil then 0

[] X|L2 then X+{SumList L2}

end

end

fun {FoldR L F U}

case L of

nil then U
[] X|L2 then {F X {FoldR L2 F U}}

end

end

7 Sep 2007 CS2104, Lecture 4 52

Types of Functions
fun {SumList L}

…

SumList :: (List Int) -> Int

fun {FoldR L F U}

…

FoldR :: {(List A) ({A B}->B) B} -> B

7 Sep 2007 CS2104, Lecture 4 53

Genericity SumList

fun {SumList Ls}
{FoldR Ls (fun {$ X Y} X+Y end) 0}

end

{Browse {SumList [1 2 3 4]}}

7 Sep 2007 CS2104, Lecture 4 54

Genericity ProductList

fun {ProductList Ls}
{FoldR Ls (fun {$ X Y} X*Y end) 1 }

end

{Browse {ProductList [1 2 3 4]}}

7 Sep 2007 CS2104, Lecture 4 55

Genericity Some

fun {Some Ls}
{FoldR Ls

(fun {$ X Y} X orelse Y end) false }
end

{Browse {Some [false true false]}}

Some :: (List Bool) -> Bool

7 Sep 2007 CS2104, Lecture 4 56

List Mapping

� Mapping
� each element recursively
� calling function for each element
� Construct a new list from the input list

� Separate function calling by passing function
as argument

7 Sep 2007 CS2104, Lecture 4 57

Other Generic Functions: Map

fun {Map Xs F}

case Xs of

nil then nil

[] X|Xr then {F X}|{Map Xr F}

end

end

{Browse {Map [1 2 3]
fun {$ X} X*X end} } %[1 4 9]

7 Sep 2007 CS2104, Lecture 4 58

Other Generic Functions: Filter

fun {Filter Xs P}

case Xs of

nil then nil

[] X|Xr then

if {P X} then X|{Filter Xr P}

else {Filter Xr P} end

end

End

{Browse {Filter [1 2 3] IsOdd}} %[1 3]

7 Sep 2007 CS2104, Lecture 4 59

Types of Functions

fun {Map Xs F}

…

Map :: {(List A) (A->B)} -> List B

fun {Filter Xs P}

…

Filter :: {(List A) (A->Bool)} -> List A

7 Sep 2007 CS2104, Lecture 4 60

Instantiation
� Instantiation: ability to return procedure

values as results from a procedure call
� A factory of specialized functions

declare

fun {Add X}
fun {$ Y} X+Y end

end

Inc = {Add 1}

{Browse {Inc 5}} % shows 6

7 Sep 2007 CS2104, Lecture 4 61

Embedding
� Embedding is when procedure values are put

in data structures
� Embedding has many uses:

� Modules: that groups together a set of related
operations (procedures)

� Software components : takes a set of modules as
its arguments and returns a new module. Can be
viewed as specifying a new module in terms of
the modules it needs.

7 Sep 2007 CS2104, Lecture 4 62

Embedding. Example
declare Algebra
local

proc {Add X Y ?Z} Z=X+Y end
proc {Mul X Y ?Z} Z=X*Y end

in
Algebra=op(add:Add mul:Mul)

end
A=2
B=3
{Browse {Algebra.add A B}}
{Browse {Algebra.mul A B}}

� Add and Mul are procedures embedded in a data structure

7 Sep 2007 CS2104, Lecture 4 63

Control Construct - For Loop
� Integer loop: repeats an operation with a sequence

of integers

proc {For I J P}

if I > J then skip

else {P I} {For I+1 J P} end

end

{For 1 10 Browse}

� Linguistic abstraction for integer loops
for I in 1..10 do {Browse I} end

For :: {Int Int (Int->())} -> ()

7 Sep 2007 CS2104, Lecture 4 64

Control Construct – ForAll Loop
� List loop: repeats an operation for all elements of a list
proc {ForAll Xs P}

case Xs of
nil then skip

[] X|Xr then {P X} {ForAll Xr P}
end

end

{ForAll [a b c d] proc{$ I} {Browse I} end}

� Linguistic abstraction for list loops
for I in [a b c d] do

{Browse I}
end

ForAll :: {(List A) A->()} -> ()

7 Sep 2007 CS2104, Lecture 4 65

Control Construct – Pipe/ Compose
� Can compose two functions together
fun {Compose P1 P2}

fun {$ X} {P1 {P2 X}} end

end

� Similar to pipe command used in Unix
P2 | P1

Compose :: {(B->C) (A->B)} -> (A->C)

7 Sep 2007 CS2104, Lecture 4 66

Folding Lists

� Consider computing the sum of list elements
� …or the product
� …or all elements appended to a list
� …or the maximum
� …or number of elements, etc

� What do they have in common?

� Example: SumList

7 Sep 2007 CS2104, Lecture 4 67

SumList/Length

fun {SumList Xs}

case Xs of
nil then 0

[] X|Xr then X + {SumList Xr} end
end

fun {Length Xs}

case Xs of
nil then 0

[] X|Xr then 1 + {Length Xr} end
end

7 Sep 2007 CS2104, Lecture 4 68

Right-Folding

� Right-folding {FoldR [x1 … xn] F S}

{F x1 {F x2 … {F xn S} …}}

or

x1�F(x2 �F(… (xn �F S) …))

right is here!

7 Sep 2007 CS2104, Lecture 4 69

FoldR

fun {FoldR Xs F S}

case Xs

of nil then S

[] X|Xr then {F X {FoldR Xr F S}} end

end

� Not tail-recursive
� Elements folded in order

7 Sep 2007 CS2104, Lecture 4 70

Instances of FoldR

fun {SumList Xs}

{FoldR Xs (fun {$ X R} X+R end) 0}
end

fun {Length Xs}

{FoldR Xs (fun {$ X R} 1+R end) 0}

end

7 Sep 2007 CS2104, Lecture 4 71

SumListT: Tail-Recursive

fun {SumListT Xs N}

case Xs of

nil then N

[] X|Xr then {SumListT Xr N+X}

end
end

{SumListT Xs 0}

� Question:
� How is this computation different from SumList?

7 Sep 2007 CS2104, Lecture 4 72

Computation of Original SumList

{SumList [2 5 7]} =

2+{SumList [5 7]} =

2+(5+{SumList [7]}) =

2+(5+(7+{SumList nil})) =

2+(5+(7+0)) =

2+(5+7) =

2+12 =

14

7 Sep 2007 CS2104, Lecture 4 73

How Tail-Recursive SumListT Compute?

{SumListT [2 5 7] 0} =

{SumListT [5 7] 0+2} =

{SumListT [5 7] 2} =

{SumListT [7] 2+5} =

{SumListT [7] 7} =

{SumListT [] 7+7} =

{SumListT [] 14} =

14

7 Sep 2007 CS2104, Lecture 4 74

SumListT Slightly Rewritten…

{SumListT [2 5 7] 0} =

{SumListT [5 7] {F 0 2}} =

{SumListT [7] {F {F 0 2} 5}} =

{SumListT nil {F {F {F 0 2} 5} 7}=

…

where F is
fun {F X Y} X+Y end

7 Sep 2007 CS2104, Lecture 4 75

Left-Folding

Left-folding {FoldL [x1 … xn] F S}

{F … {F {F S x1} x2} … xn}

or
(…((S �F x1) �F x2) … �F xn)

left is here!

7 Sep 2007 CS2104, Lecture 4 76

FoldL and SumListT
fun {FoldL Xs F S}

case Xs

of nil then S

[] X|Xr then {FoldL Xr F {F S X}}

end
end

fun {SumListT Xs}
{FoldL Xs (fun {Plus X Y} X+Y end) 0}

end

FoldL :: {(List A) ({B A}->B) B} -> B

7 Sep 2007 CS2104, Lecture 4 77

Properties of FoldL

� Tail recursive
� First element of list folded first…

� that is evaluated first.

7 Sep 2007 CS2104, Lecture 4 78

FoldL or FoldR?

� FoldL and FoldR can be transformed to each
other, if function F is associative:

{F X {F Y Z}}== {F {F X Y} Z}

Other conditions possible.

� Otherwise: choose FoldL or FoldR
� depending on required order of result

7 Sep 2007 CS2104, Lecture 4 79

Example: Appending Lists

� Given: list of lists
[[a b] [1 2] [e] [g]] => [a b 1 2 e g]

� Task: compute all elements in one list in order

� Solution:
fun {AppAll Xs}

{FoldR Xs Append nil}

end

� Question: What would happen with FoldL?

7 Sep 2007 CS2104, Lecture 4 80

What would happen with FoldL?

fun {AppAllLeft Xs}

{FoldL Xs Append nil}

end

{AppAllLeft [[a b] [1 2] [e] [g]]} =

{FoldL [[a b] [1 2] [e] [g]] Append nil} =

{FoldL [[1 2] [e] [g]] Append {Append nil [a b]}}=
...

7 Sep 2007 CS2104, Lecture 4 81

How Does AppAllLeft Compute?
{FoldL [[1 2] [e] [g]] Append [a b]} =

{FoldL [[e] [g]] Append {Append [a b] [1 2]}} =

{FoldL [[e] [g]] Append [a b 1 2]} =

{FoldL [[g]] Append {Append [a b 1 2] [e]}} =

{FoldL [[g]] Append [a b 1 2 e]} =

{FoldL nil Append {Append [a b 1 2 e] [g]}} =

{FoldL nil Append [a b 1 2 e g]} =

= [a b 1 2 e g]

7 Sep 2007 CS2104, Lecture 4 82

Summary so far
� Many operations can be partitioned into

� pattern implementing
� recursion
� application of operations

� operations to be applied

� Typical patterns
� Map mapping elements
� FoldL/FoldR folding elements
� Filter filtering elements
� Sort sorting elements
� …

7 Sep 2007 CS2104, Lecture 4 83

Goal

� Programming as an engineering/scientific
discipline

� An engineer can
� understand abstract machine/properties
� apply programming techniques

� develop programs with suitable techniques

7 Sep 2007 CS2104, Lecture 4 84

Summary
� Computing with procedures

� lexical scoping
� closures
� procedures as values
� procedure call

� Higher-Order Programming
� proc. abstraction
� lazy arguments
� genericity
� loop abstraction
� folding

7 Sep 2007 CS2104, Lecture 4 85

Reading suggestions

� Chapter 1 and 3, Sections 1.9, 3.6 from [van
Roy,Haridi; 2004]

� Exercises 2.9.1, 2.9.2, 1.18.6 from [van
Roy,Haridi; 2004]

7 Sep 2007 CS2104, Lecture 4 86

Thank you for your attention!

7 Sep 2007 CS2104, Lecture 4 87

Simple Example

local P in local Y in local Z in
Z=1

proc {P X} Y=X end
{P Z}

end end end

� We shall reason that X, Y and Z will be bound
to 1

7 Sep 2007 CS2104, Lecture 4 88

Simple Example

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Initial execution state

7 Sep 2007 CS2104, Lecture 4 89

Simple Example

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Statement

7 Sep 2007 CS2104, Lecture 4 90

Simple Example

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Empty environment

7 Sep 2007 CS2104, Lecture 4 91

Simple Example

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Semantic statement

7 Sep 2007 CS2104, Lecture 4 92

Simple Example

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Semantic stack

7 Sep 2007 CS2104, Lecture 4 93

Simple Example

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Empty store

7 Sep 2007 CS2104, Lecture 4 94

Simple Example: local

([(local P Y Z in

Z=1

proc {P X} Y=X end

{P Z}

end, �)],
�)

� Create new store variables
� Extend the environment

7 Sep 2007 CS2104, Lecture 4 95

Simple Example

([(Z=1
proc {P X} Y=X end

{P Z}, {P�p, Y�y, Z�z})],
{p, y, z})

7 Sep 2007 CS2104, Lecture 4 96

Simple Example

([(Z=1
proc {P X} Y=X end

{P Z}, {P�p, Y�y, Z�z})],
{p, y, z})

� Split sequential composition

7 Sep 2007 CS2104, Lecture 4 97

Simple Example

([(Z=1, {P�p, Y�y, Z�z}),
(proc {P X} Y=X end

{P Z}, {P�p, Y�y, Z�z})],
{p, y, z})

� Split sequential composition

7 Sep 2007 CS2104, Lecture 4 98

Simple Example

([(proc {P X} Y=X end

{P Z}, {P�p, Y�y, Z�z})],
{p, y, z=1})

� Variable-value assignment

7 Sep 2007 CS2104, Lecture 4 99

Simple Example

([(proc {P X} Y=X end, {P�p, Y�y, Z�z}),
({P Z}, {P�p, Y�y, Z�z})],

{p, y, z=1})

� Split sequential composition

7 Sep 2007 CS2104, Lecture 4 100

Simple Example

([(proc {P X} Y=X end, {P�p, Y�y, Z�z}),
({P Z}, {P�p, Y�y, Z�z})],

{p, y, z=1})

� Procedure definition
� external reference Y

� formal argument X

� Contextual environment {Y�y}
� Write procedure value to store

7 Sep 2007 CS2104, Lecture 4 101

Simple Example

([({P Z}, {P�p, Y�y, Z�z})],
{ p = (proc {$ X} Y=X end, {Y�y}),

y, z=1})

� Procedure call: use p
� Note: p is a value like any other variable. It is the

semantic statement (proc {$ X} Y=X end, {Y�y})
� Environment

� start from {Y � y}
� adjoin {X � z}

7 Sep 2007 CS2104, Lecture 4 102

Simple Example

([(Y=X, {Y�y, X�z})],

{ p = (proc {$ X} Y=X end, {Y�y}),
y, z=1})

� Variable-variable assignment
� Variable for Y is y
� Variable for X is z

7 Sep 2007 CS2104, Lecture 4 103

Simple Example

([],
{ p = (proc {$ X} Y=X end, {Y�y}),

y=1, z=1})

� Voila!

� The semantic stack is in the run-time state
terminated, since the stack is empty

