
5th Oct 2007 CS2104, Lecture 7 1

Programming Language Concepts,
CS2104
Lecture 7

Types, ADT, Haskell, Components

5th Oct 2007 CS2104, Lecture 7 2

Reminder of Last Lecture

Tupled Recursion

Exceptions

5th Oct 2007 CS2104, Lecture 7 3

Overview

Types

Abstract Data Types

Haskell

Design Methodology

5th Oct 2007 CS2104, Lecture 7 4

Dynamic Typing

Oz/Scheme uses dynamic typing, while Java uses
static typing.

In dynamic typing, each value can be of arbitrary
types that is only checked at runtime.

Advantage of dynamic types
no need to declare data types in advance

more flexible

Disadvantage
errors detected late at runtime

less readable code

5th Oct 2007 CS2104, Lecture 7 5

Type Notation

Every value has a type which can be
captured by:

e :: type

Type information helps program
development/documentation

Many functions are designed based on the
type of the input arguments

5th Oct 2007 CS2104, Lecture 7 6

List Type

Based on the type hierarchy
〈Value〉, 〈Record〉,…
〈Record〉 ⊂ 〈Value〉

The Record type is a subtype of the Value type

List is either nil or X|Xr
where Xr is a list and X is an arbitrary value

〈List〉 ::= nil ⏐ 〈Value〉’|’〈List〉

5th Oct 2007 CS2104, Lecture 7 7

Polymorphic List

Usually all elements of the same type

Polymorphic list with elements of T type
〈List T〉 ::= nil ⏐ 〈T〉’|’〈List T〉

T is a type variable

〈List ?〉 is a type constructor

〈List 〈Int〉〉 : a list whose elements are integers

〈List 〈Value〉〉 is equal to 〈List〉

5th Oct 2007 CS2104, Lecture 7 8

Polymorphic Binary Tree
Binary trees

〈BTree T〉 ::= leaf ⏐
tree(key:〈Literal〉 value:T

left: 〈BTree T〉
right: 〈BTree T〉)

Binary tree representing a dictionary mapping keys
to values
Binary tree is:

either a leaf (atom leaf), or
an internal node with label tree, with left and right sub-
trees, a key and a value

Key is of literal type and the value is of type T

5th Oct 2007 CS2104, Lecture 7 9

Types for procedures and functions

The type of a procedure where T1 … Tn are
the types of its arguments can be
represented by:

〈proc {$ T1 … Tn}〉
or

{T1 … Tn} → ()

5th Oct 2007 CS2104, Lecture 7 10

On Types: procedures and functions

The type of a function where T1 … Tn are the
types of the arguments, and T is the type of
the result is:

〈fun {$ T1 … Tn}:T〉
or

{T1 … Tn} → T

Append ::{〈List〉 〈List〉}→〈List〉
or precisely ::{〈List A〉 〈List A〉}→〈List A〉

5th Oct 2007 CS2104, Lecture 7 11

Constructing Programs from Type

Programs that takes lists has a form that
corresponds to the list type

Code should also follow type, e.g:
case Xs of

nil then 〈expr1〉 % base case
[] X|Xr then 〈expr2〉 % recursive call
end

5th Oct 2007 CS2104, Lecture 7 12

Constructing Programs from Type

Helpful when the type gets complicated

Nested lists are lists whose elements can be lists

Exercise: “Find the number of elements of a nested list”
Xs= [[1 2] 4 nil [[5] 10]]
{Length Xs} = 5

declare
Xs1=[[1 2] 4 nil]
{Browse Xs1}
Xs2=[[1 2] 4]|nil
{Browse Xs2}

[[1 2] 4 nil]

[[[1 2] 4]]

5th Oct 2007 CS2104, Lecture 7 13

Constructing Programs from Type

Nested lists type declaration
〈NList T〉 ::= nil

⏐ 〈NList T〉 '|' 〈NList T〉
⏐ T '|' 〈NList T〉 (T is not nil nor a cons)

General structure:
case Xs
of nil then 〈expr1〉 % base case
[] X|Xr andthen {IsList X} then

〈expr2〉 % recursive calls for X and Xr
[] X|Xr then

〈expr3〉 % recursive call for Xr
end

5th Oct 2007 CS2104, Lecture 7 14

Constructing Programs from Type
Length :: {〈NList T〉} → 〈Int〉
fun {Length Xs}

case Xs
of nil then 0 % base case
[] X|Xr andthen {IsList X} then

{Length X} + {Length Xr}
[] X|Xr then

1+{Length Xr}
end

end
fun {IsList L}

L == nil orelse
{Label L}=='|' andthen {Width L}==2

end

5th Oct 2007 CS2104, Lecture 7 15

Summary so far

Type Notation

Polymorphic Types

Function types

Constructing programs from type

5th Oct 2007 CS2104, Lecture 7 16

Abstract Data Types

Preview

5th Oct 2007 CS2104, Lecture 7 17

Data Types

Data type
set of values
operations on these values

Primitive data types
records
numbers
…

Abstract data types
completely defined by its operations (interface)
implementation can be changed without changing use

5th Oct 2007 CS2104, Lecture 7 18

Motivation

Sufficient to understand interface only

Software components can be developed
independently when they are used through
interfaces.

Developers need not know implementation
details

5th Oct 2007 CS2104, Lecture 7 19

Outlook

How to define abstract data types

How to organize abstract data types

How to use abstract data types

5th Oct 2007 CS2104, Lecture 7 20

Abstract data types (ADTs)

A type is abstract if it is completely defined by
its set of operations/functionality.

Possible to change the implementation of an
ADT without changing its use

ADT is described by a set of procedures
Including how to create a value of the ADT

These operations are the only thing that a
user of ADT can assume

5th Oct 2007 CS2104, Lecture 7 21

Example: stack

Assume we want to define a new data type
〈stack T〉 whose elements are of any type T

We define the following operations (with type
definitions)

〈fun {NewStack}: 〈stack T〉〉
〈fun {Push 〈stack T〉 〈T〉 }: 〈stack T〉〉
〈proc {Pop 〈stack T〉 ?〈T〉 ?〈stack T〉}〉
〈fun {IsEmpty 〈stack T〉}: 〈Bool〉〉

5th Oct 2007 CS2104, Lecture 7 22

Example: stack (algebraic properties)

Algebraic properties are logical relations between
ADT’s operations

Operations normally satisfy certain laws (properties)
{IsEmpty {NewStack}} = true

For any stack S, {IsEmpty {Push S}} = false

For any E and S, {Pop {Push S E} E S} holds

For any stack S, {Pop {NewStack} S} raises error

5th Oct 2007 CS2104, Lecture 7 23

stack (implementation I) using lists

fun {NewStack} nil end

fun {Push S E} E|S end

proc {Pop E|S ?E1 ?S1}

E1 = E

S1 = S

end

fun {IsEmpty S} S==nil end

5th Oct 2007 CS2104, Lecture 7 24

stack (implementation II) using tuples

fun {NewStack} emptyStack end

fun {Push S E} stack(E S) end

proc {Pop stack(E S) E1 S1}
E1 = E

S1 = S

end

fun {IsEmpty S} S==emptyStack end

5th Oct 2007 CS2104, Lecture 7 25

Why is Stack Abstract?

A program that uses the stack will work with
either implementation (gives the same result)

declare Top S4

% ... either implementation

S1={NewStack}

S2={Push S1 2}

S3={Push S2 5}

{Pop S3 Top S4}

{Browse Top} 5

5th Oct 2007 CS2104, Lecture 7 26

What is a Dictionary?

A dictionary is a finite mapping from a set of
simple constants to a set of language entities.

The constants are called keys because they
provide a unique the path to each entity.

We will use atoms or integers as constants.

Goal: create the mapping dynamically, i.e.,
by adding new keys during the execution.

5th Oct 2007 CS2104, Lecture 7 27

Example: Dictionaries

Designing the interface of Dictionary
MakeDict :: {} → Dict

returns new dictionary

DictMember :: {Dict Feature} → Bool

tests whether feature is member of dictionary

DictAccess :: {Dict Feature} → Value

return value of feature in Dict

DictAdjoin :: {Dict Feature Value} → Dict

return adjoined dictionary with value at feature

Interface depends on purpose, could be richer.

5th Oct 2007 CS2104, Lecture 7 28

Implementing the Dict ADT

Two possible implementations are
based on pairlists

based on records

Regardless of implementation, programs
using the ADT should work!

the interface is a contract between use and
implementation

5th Oct 2007 CS2104, Lecture 7 29

Dict: List of Pairs
fun {MakeDict}

nil

end

fun {DictMember D F}

case D of nil then false

[] G#X|Dr then if G==F then true

else {DictMember Dr F} end

end

end

Example: telephone book
[name1#62565243 name2#67893421 taxi1#65221111...]

5th Oct 2007 CS2104, Lecture 7 30

Dict: Records
fun {MakeDict} {MakeRecord d []} end

fun {DictMember D F} {HasFeature D F} end

fun {DictAccess D F} D.F end

fun {DictAdjoin D F X}

{AdjoinAt D F X}

end

Example: telephone book
d(name1:62565243 name2:67893421
taxi1:65521111...)

5th Oct 2007 CS2104, Lecture 7 31

Example: Frequency Word Counting
local

fun {Inc D X}
if {DictMember D X} then

{DictAdjoin D X {DictAccess D X}+1}
else {DictAdjoin D X 1}
end

end
in

fun {Cnt Xs}
% returns dictionary
{FoldL Xs Inc {MakeDict}}

end
end

{Inc mr(a:3 b:2 c:1) b} mr(a:3 b:3 c:1)

5th Oct 2007 CS2104, Lecture 7 32

Example: Frequency Word Counting
local

fun {Inc D X}
if {DictMember D X} then

{DictAdjoin D X {DictAccess D X}+1}
else {DictAdjoin D X 1}
end

end
in

fun {Cnt Xs}
% returns dictionary
{FoldL Xs Inc {MakeDict}}

end
end
{Browse {Cnt [a b c a b a]}} mr(a:3 b:2 c:1)

homework:
understand and try

this example!

5th Oct 2007 CS2104, Lecture 7 33

Evolution of ADTs

Important aspect of developing ADTs
start with simple (possibly inefficient)
implementation

refine to better (more efficient) implementation

refine to carefully chosen implementation
hash table

search tree

Evolution is local to ADT
no change to external programs needed!

5th Oct 2007 CS2104, Lecture 7 34

Theoretically

Polymorphic type is related to Universal Type
fun {Id X} X end

Id :: A A

Universal type : ∀ A. A A

ADT can be implemented using existential
type.

∃ A. type

where A is considered to be hidden/abstracted

5th Oct 2007 CS2104, Lecture 7 35

Example

Say we want to Peano-number ADT
Expr=(fun {MakeSucc N:Nat} {Succ N} end

,fun {MakeZero} 0:Nat end)

This implementation currently has type :

(Nat Nat, Nat)

Can make into existential type using:
pack Nat as N in Expr

which will now have a more abtract type :

∃ N. (N N, N)

5th Oct 2007 CS2104, Lecture 7 36

Haskell

Typeful and Lazy Functional Language

5th Oct 2007 CS2104, Lecture 7 37

Typeful Programs

Every expression has a statically determined
type that can be declared or inferred

Equations defined by pattern-matching
equations

fact :: Integer -> Integer

fact 0 = 1

fact n | n>0 = n * fact (n-1)

5th Oct 2007 CS2104, Lecture 7 38

Lazy Evaluation

Each argument is not evaluated before the
call but evaluated when needed (e.g. when
matched against patterns)

andThen :: Bool -> Bool -> Bool

andThen True x = x

andThen False x = False

5th Oct 2007 CS2104, Lecture 7 39

Type Declaration

Data types have to be declared/enumerated.

data Bool = True | False

data ListInt = Nil | Cons Integer ListInt

type PairInt = (Integer, Integer)

5th Oct 2007 CS2104, Lecture 7 40

Polymorphic Types

Generic types can be defined with type
variables.

data BTree a = Empty

| Node a (BTree a) (BTree a)

type BTreeInt = BTree Int

size :: BTree a -> Integer

size Empty = 0

size (Node v l t) = 1+(size l)+(size t)

5th Oct 2007 CS2104, Lecture 7 41

Currying

Functions with multiple parameters may be
partially applied.

add :: Integer -> Integer -> Integer

add x y = x+y

addT :: (Integer, Integer) -> Integer

addT(x,y) = x+y

Valid Expressions:
(add 1 2) = addT(1,2)

(add 1) = \ y -> addT(1,y)

5th Oct 2007 CS2104, Lecture 7 42

Type Classes

Some functions work on a set of types. For
example, sorting works on data values that
are comparable.

Wrong to use polymorphic types!

Use type class Ord a instead.

sort :: Ord a => (List a) -> (List a)

sort :: (List a) -> (List a)

5th Oct 2007 CS2104, Lecture 7 43

Type Classes

Class is characterized by a set of methods

class Eq a

== :: a -> a -> Bool

class Eq a => Ord a

>, >= :: a -> a -> Bool

a>=b = (a>b) or (a==b)

5th Oct 2007 CS2104, Lecture 7 44

Type Classes

Need to define instances of given class

instance Ord Int

a>b = a >Int b

instance Ord a => Ord [a]

[] > ys = False

x:xs > [] = True

x:xs > y:ys = x>y or (x==y & xs>ys)

lexicographic ordering

5th Oct 2007 CS2104, Lecture 7 45

Classes in Standard Library

5th Oct 2007 CS2104, Lecture 7 46

Multi-Parameter Type Classes

Can support generic type constructors

class Functor f where

fmap :: (a b) f a f b

instance Functor Tree where

fmap f (Leaf x) = Leaf (f x)

fmap f (Node l r)

= Node (fmap f l) (fmap f r)

5th Oct 2007 CS2104, Lecture 7 47

Design methodology

Standalone applications

5th Oct 2007 CS2104, Lecture 7 48

Design methodology

“Programming in the large”
Written by more than one person, over a long
period of time

“Programming in the small”
Written by one person, over a short period of time

5th Oct 2007 CS2104, Lecture 7 49

Design methodology. Recommendations

Informal specification: inputs, outputs, relation
between them

Exploration: determine the programming technique;
split the problem into smaller problems

Structure and coding: determine the program’s
structure; group related operations into one module

Testing and reasoning: test cases/formal semantics

Judging the quality: Is the design correct, efficient,
maintainable, extensible, simple?

5th Oct 2007 CS2104, Lecture 7 50

Software components

Split the program into modules (also called
logical units, components)

A module has two parts:
An interface = the visible part of the logical unit. It is
a record that groups together related languages
entities: procedures, classes, objects, etc.

An implementation = a set of languages entities
that are accessible by the interface operations but
hidden from the outside.

5th Oct 2007 CS2104, Lecture 7 51

Module

declare MyList in

local

proc {Append … } … end

proc {Sort … } … end

…

in

MyList = ‘export’(append:Append

sort : Sort

…)

end

5th Oct 2007 CS2104, Lecture 7 52

Modules and module specifications

A module specification (e.g. functor) is a
template that creates a module (component
instance) each time it is instantiated.

In Oz, a functor is a function whose
arguments are the modules it needs and
whose result is a new module.

Actually, the functor takes module interfaces as
arguments, creates a new module, and returns
that module’s interface!

5th Oct 2007 CS2104, Lecture 7 53

Functor

fun {MyListFunctor}
proc {Append … } … end
proc {Sort … } … end
…

in
‘export’(append : Append

sort : Sort
…)

end

5th Oct 2007 CS2104, Lecture 7 54

Modules and module specifications

A software component is a unit of
independent deployment, and has no
persistent state.

A module is the result of installing a functor in
a particular module environment.

The module environment consists of a set of
modules, each of which may have an
execution state.

5th Oct 2007 CS2104, Lecture 7 55

Functors

A functor has three parts:
an import part = what other modules it needs

an export part = the module interface

a define part = the module implementation
including initialization code.

Functors in the Mozart system are
compilation units.

source code (i.e., human-readable text, .oz)

object code (i.e., compiled form, .ozf).

5th Oct 2007 CS2104, Lecture 7 56

Standalone applications (1)

It can be run without the interactive interface.
It has a main functor, evaluated when the
program starts.
Imports the modules it needs, which causes
other functors to be evaluated.
Evaluating (or “installing”) a functor creates a
new module:

The modules it needs are identified.
The initialization code is executed.
The module is loaded the first time it is needed during
execution.

5th Oct 2007 CS2104, Lecture 7 57

Standalone applications (2)

This technique is called dynamic linking, as
opposed to static linking, in which the
modules are already loaded when execution
starts.

At any time, the set of currently installed
modules is called the module environment.

Any functor can be compiled to make a
standalone program.

5th Oct 2007 CS2104, Lecture 7 58

Functors. Example (GenericFunctor.oz)

functor
export generic:Generic
define

fun {Generic Op InitVal N}
if N == 0 then InitVal
else {Op N {Generic Op InitVal (N-1)}}
end

end
end

The compiled functor GenericFunctor.ozf is created:
ozc –c GenericFunctor.oz

5th Oct 2007 CS2104, Lecture 7 59

Functors (Standalone Application)
functor
import
GenericFunctor
Browser

define
fun {Mul X Y} X*Y end
fun {FactUsingGeneric N}

{GenericFunctor.generic Mul 1 N}
end
{Browser.browse {FactUsingGeneric 5}}

end
The executable functor GenericFact.exe is created:
ozc –x GenericFact.oz

GenericFact

GenericFunctor Browser

imported

executable

5th Oct 2007 CS2104, Lecture 7 60

Functors. Interactive Example
declare
[GF]={Module.link ['GenericFunctor.ozf']}
fun {Add X Y} X+Y end
fun {GenGaussSum N} {GF.generic Add 0 N} end
{Browse {GenGaussSum 5}}

Function Module.link is defined in the system module
Module.
It takes a list of functors, load them from the file system,
links them together

(i.e., evaluates them together, so that each module sees its
imported modules),

and returns a corresponding list of modules.

5th Oct 2007 CS2104, Lecture 7 61

Summary

Type Notation
Constructing programs by following the type

Haskell

Design methodology
modules/functors

5th Oct 2007 CS2104, Lecture 7 62

Reading suggestions

From [van Roy,Haridi; 2004]
Chapter 3, Sections 3.2-3.4, 3.9

Exercises 2.9.8, 3.10.6-3.10.10

5th Oct 2007 CS2104, Lecture 7 63

Future

12Oct : Declarative Concurrency

19Oct : Message Passing Concurrency

26Oct : Stateful Programming

2Nov : Quiz 2 (1.5 hr and open book)

9Nov : Relational Programming

16Nov : Revision

