
12/10/2007 CS2104, Lecture 8 1

Programming Language Concepts,
CS2104
Lecture 8

Declarative Concurrency

12/10/2007 CS2104, Lecture 8 2

Reminder of Last Lecture

Programming techniques
Types

Abstract data types

Haskell

Design methodology : functors + modules

12/10/2007 CS2104, Lecture 8 3

Overview

Declarative concurrency

Mechanisms of concurrent program

Streams

Demand-driven execution
execute computation, if variable needed

needs suspension by a thread

requested computation is running in new thread

By-Need triggers

Lazy functions

12/10/2007 CS2104, Lecture 8 4

The World is Concurrent!

Concurrent programs

several activities execute

simultaneously (concurrently)

Most of the software used are concurrent
operating system: IO, user interaction, many
processes, …

web browser, Email client, Email server, …

telephony switches handling many calls

…

12/10/2007 CS2104, Lecture 8 5

Why Should We Care?

Software must be concurrent…

… for many application areas

Concurrency can be helpful for constructing
programs

organize programs into independent parts

concurrency allows to make them independent with respect
to how to execute

essential: how do concurrent programs interact?

Concurrent programs can run faster on parallel
machines (including clusters and cores)

12/10/2007 CS2104, Lecture 8 6

Concurrency and Parallelism

Concurrency is logically simultaneous processing
which can also run on sequential machine.

Parallelism is physically simultaneous processing
and it involves multiple processing elements and/or
independent device operations.

A computer cluster is a group of connected
computers that work together as a unit. One popular
implementation is a cluster with nodes running Linux
with support library (for parallelism).

12/10/2007 CS2104, Lecture 8 7

Concurrent Programming is
Difficult…

This is the traditional belief

The truth is: concurrency is very difficult…

… if used with inappropriate tools and

programming languages

Particularly troublesome : state and
concurrency

12/10/2007 CS2104, Lecture 8 8

Concurrent Programming is Easy…

Oz (as well as Erlang) has been designed to
be very good at concurrency…

Essential for concurrent programming here
data-flow variables

very simple interaction between

concurrent programs, mostly automatic

light-weight threads

12/10/2007 CS2104, Lecture 8 9

Declarative Concurrent Programming

What stays the same
the result of your program

concurrency does not change the result

What changes
programs can compute incrementally

incremental input… (such as reading from a
network connection) … and incremental
processing

12/10/2007 CS2104, Lecture 8 10

Threads

12/10/2007 CS2104, Lecture 8 11

Our First Concurrent Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Browser will show [X0 X1 X2 X3]

variables are not yet assigned

12/10/2007 CS2104, Lecture 8 12

Our First Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Both threads are suspended
X1 = 1 + X0 suspended; X0 unassigned

X3 = X1 + X2 suspended; X1, X2 unassigned

12/10/2007 CS2104, Lecture 8 13

Our First Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Feeding X0 = 4

12/10/2007 CS2104, Lecture 8 14

Our First Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Feeding X0 = 4

First thread can execute, binds X1 to 5

12/10/2007 CS2104, Lecture 8 15

Our First Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Feeding X0 = 4

First thread can execute, binds X1 to 5

Browser shows [4 5 X2 X3]

12/10/2007 CS2104, Lecture 8 16

Our First Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Second thread is still suspended
Variable X2 is still not assigned

12/10/2007 CS2104, Lecture 8 17

Our First Program

declare X0 X1 X2 X3

thread X1 = 1 + X0 end

thread X3 = X1 + X2 end

{Browse [X0 X1 X2 X3]}

Feeding X2 = 2

Second thread can execute, binds X3 to 7

Browser shows [4 5 2 7]

12/10/2007 CS2104, Lecture 8 18

Threads

A thread is simply an executing program.

A program can have more than one thread.

A thread is created by :

thread 〈s〉 end

Threads compute
independently

as soon as their statements can be executed

interact by binding variables in store

12/10/2007 CS2104, Lecture 8 19

The Browser

Browser is implemented in Oz as a thread.

It also runs whenever browsed variables are
bound

It uses some extra functionality to look at
unbound variables

12/10/2007 CS2104, Lecture 8 20

Sequential Model

w = a
z = person(age: y)
x
y = 42
u

Single-assignment
store

Semantic
Stack

Statements are
executed sequentially
from a single semantic
stack

12/10/2007 CS2104, Lecture 8 21

Concurrent Model

w = a
z = person(age: y)
x
y = 42
u

Single-assignment
store

Semantic
Stack 1

Semantic
Stack N

Multiple semantic
stacks (threads)

12/10/2007 CS2104, Lecture 8 22

Concurrent Declarative Model

〈s〉 ::= skip empty statement
| 〈x〉 = 〈y〉 variable-variable binding
| 〈x〉 = 〈v〉 variable-value binding
| 〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| proc {〈x〉 〈y1〉 … 〈yn〉 } 〈s1〉 end procedure introduction
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| { 〈x〉 〈y1〉 … 〈yn〉 } procedure application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching
| thread 〈s1〉 end thread creation

Kernel language extended with thread creation

12/10/2007 CS2104, Lecture 8 23

The Concurrent Model

Single-assignment
store

thread 〈s1〉 end,E
ST

Top of Stack, Thread i

12/10/2007 CS2104, Lecture 8 24

The Concurrent Model

Single-assignment
store

STTop of Stack, Thread i thread 〈s1〉 end,E

12/10/2007 CS2104, Lecture 8 25

Basic Concepts

Model allows multiple statements to execute
”simultaneously” ?

Can imagine that these threads really execute in
parallel, each has its own processor, but share the
same memory

Reading and writing different variables can be done
simultaneously by different threads

Reading the same variable can be done
concurrently.

Writing to the same variable to be done sequentially.

12/10/2007 CS2104, Lecture 8 26

Causal Order

In a sequential program, all execution states
are totally ordered

In a concurrent program, all execution states
of a given thread are totally ordered

But, ... the execution state of the concurrent
program as a whole is partially ordered

12/10/2007 CS2104, Lecture 8 27

Total Order

In a sequential program all execution states
are totally ordered
Computation step: transition between two
consecutive execution states

computation step

sequential
execution

12/10/2007 CS2104, Lecture 8 28

Causal Order in the Declarative Model

In a concurrent program all execution states
of a given thread are totally ordered

The execution state of the concurrent
program is partially ordered

computation step

thread T1

thread T2

thread T3

fork a thread

12/10/2007 CS2104, Lecture 8 29

Causal Order in the Declarative Model

computation step

thread T1

thread T2

thread T3

fork a thread

bind a dataflow variable

synchronize on a dataflow variable

x

y

12/10/2007 CS2104, Lecture 8 30

Nondeterminism

An execution is nondeterministic if there is a
computation step in which there is a choice
what to do next

Nondeterminism appears naturally when
there are multiple concurrent states

12/10/2007 CS2104, Lecture 8 31

Example of Nondeterminism

time

Thread 1

x = 1

x
y = 5

store

time

Thread 2

x = 3

The thread that binds x first will continue,
the other thread will raise an exception

12/10/2007 CS2104, Lecture 8 32

Nondeterminism

If there is only one binder for each dataflow
variable, nondeterminism is not observable
on the store.

That is the store has the same final results.

Hence, for correctness we can ignore the
concurrency

This concept is known as ”Declarative
Concurrency”.

12/10/2007 CS2104, Lecture 8 33

Declarative concurrency
Declarative programming (Reminder):

the output of a declarative program should be a
mathematical function of its input.

Functional programming (Reminder):
the program executes with some input values and when it
terminates, it has returned some output values.

Data-driven concurrent model: a concurrent program
is declarative if all executions with a given set of
inputs have one of two results:

(1) they all do not terminate or

(2) they all eventually reach partial termination and give
results that are logically equivalent.

12/10/2007 CS2104, Lecture 8 34

Partial Termination. Example
fun {Double Xs}

case Xs of

nil then nil

[] X|Xr then 2*X|{Double Xr} end

end

Ys={Double Xs}

As long as input stream Xs grows, then output stream
Ys grows too. The program never terminates.

However, if the input stream stops growing, then the
program will eventually stop executing too.

The program does a partial termination.

12/10/2007 CS2104, Lecture 8 35

Partial Termination. Examples

If the inputs are bound to some partial values, then the
program will eventually end up in partial termination.
Also, the outputs will be bound to some partial values.

What is the relation of outputs in terms of inputs when
we consider partial values?

Example:
Xs=1|2|3|Xr Ys will be bound to 2|4|6|_

Having Xr=4|5|Xr1, we get Ys bound to 2|4|6|8|10|_

Making Xr1=nil, we get Ys bound to [2 4 6 8 10]

12/10/2007 CS2104, Lecture 8 36

Logical Equivalence. Examples

What does store contents being “the same”
means?
Example 1:

Case 1: X=1 Y=X
Case 2: Y=X X=1

The store contents is the same for both cases
Example 2:

Case 1: X=foo(Y W) Y=Z
Case 2: X=foo(Z W) Y=Z

The store contents is the same for both cases

12/10/2007 CS2104, Lecture 8 37

Logical Equivalence

A set of store bindings is called a constraint.

For each variable x and constraint c, we define
values(x, c) to be the set of all possible values
x can have, given that c holds.

Example: values(x,2<x<8)={3,4,5,6,7}

arbitrary constraint

12/10/2007 CS2104, Lecture 8 38

Logical Equivalence

Two constraints c1 and c2 are logically
equivalent if:
(1) they contain the same set of variables, and

(2) for each variable x, values(x, c1) = values(x, c2).

12/10/2007 CS2104, Lecture 8 39

Logical Equivalence. Example

Example:
suppose that x, y, z, and w are store variables.

the constraint

x = foo(y w) ^ y = z

is logically equivalent to the constraint

x = foo(z w) ^ y = z.

Reason: y = z forces y and z to have the
same set of possible values, so that foo(y w)
defines the same set of values as foo(z w).

12/10/2007 CS2104, Lecture 8 40

Scheduling

The choice of which thread to execute next
and for how long is done by the scheduler

A thread is runnable if its next statement to
execute is not blocked on a dataflow variable,
otherwise the thread is suspended

12/10/2007 CS2104, Lecture 8 41

Scheduling

A scheduler is fair if it does not starve each
runnable thread

All runnable threads execute eventually

Fair scheduling makes it easier to reason
about programs

Otherwise some runnable programs will never
get its turn for execution.

12/10/2007 CS2104, Lecture 8 42

Example of Runnable Threads

thread

for I in 1..10000 do {Browse 1} end

end

thread

for I in 1..10000 do {Browse 2} end

end

12/10/2007 CS2104, Lecture 8 43

Example of Runnable Threads
thread

for I in 1..10000 do {Browse 1} end

end

thread

for I in 1..10000 do {Browse 2} end

end

• This program will interleave the execution of
two threads, one printing 1, and the other
printing 2

• fair scheduler

12/10/2007 CS2104, Lecture 8 44

Example of Runnable Threads

12/10/2007 CS2104, Lecture 8 45

Dataflow Computation
Threads suspend when dataflow variables needed are
not yet bound
{Delay X} primitive makes the thread suspends for X
milliseconds, after that the thread is runnable

declare X
{Browse X}
local Y in

thread {Delay 1000} Y = 10*10 end
X = Y + 100*100

end

12/10/2007 CS2104, Lecture 8 46

Concurrency is Transparent

fun {CMap Xs F}

case Xs

of nil then nil

[] X|Xr then

thread {F X} end | {CMap Xr F}

end

end

Example : a concurrent map operation

12/10/2007 CS2104, Lecture 8 47

Concurrency is Transparent

fun {CMap Xs F}

case Xs

of nil then nil

[] X|Xr then

thread {F X} end | {CMap Xr F}

end

end

thread … end
can also be used

as expression

12/10/2007 CS2104, Lecture 8 48

Concurrency is Transparent

What happens:
declare F

{Browse {CMap [1 2 3 4] F}}

Browser shows [_ _ _ _]

CMap computes the list skeleton

newly created threads suspend until F becomes
bound

12/10/2007 CS2104, Lecture 8 49

Concurrency is Transparent

What happens:
F = fun {$ X} X+1 end

Browser shows [2 3 4 5]

12/10/2007 CS2104, Lecture 8 50

Cheap Concurrency and Dataflow

Declarative programs can be easily made
concurrent

Just use the thread statement where
concurrency is needed

12/10/2007 CS2104, Lecture 8 51

Cheap Concurrency and Dataflow

fun {Fib X}
if X==0 then 0
elseif X==1 then 1
else

thread {Fib X-1} end + {Fib X-2}
end

end

12/10/2007 CS2104, Lecture 8 52

Understanding why

fun {Fib X}
if X==0 then 0 elseif X==1 then 1
else Y1 Y2 in

Y1 = thread {Fib X-1} end
Y2 = {Fib X-2}
Y1 + Y2

end
end

Dataflow dependency

12/10/2007 CS2104, Lecture 8 53

Execution of {Fib 6}

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1F3

F2

Fork a thread

Synchronize on result

Running thread

{Fib 6} is denoted as F6,...

12/10/2007 CS2104, Lecture 8 54

Fib

12/10/2007 CS2104, Lecture 8 55

Streams

12/10/2007 CS2104, Lecture 8 56

Streams
A most useful technique for declarative concurrent
programming to use streams to communicate between
threads.
A stream is a potentially unbounded list of messages,
i.e., it is a list whose tail is an unbound dataflow
variable.
A thread communicating through streams is a kind of
“active object”, also called stream object.
A sequence of stream objects each of which feeds the
next is called a pipeline.
Deterministic stream programming: each stream
object always knows for each input where the next
message will come from.

12/10/2007 CS2104, Lecture 8 57

Producer ⇔ Consumer

thread X={Produce} end

thread Result={Consume X} end

Typically, what is produced will be put on a list
that never ends (without nil), called stream

Consumer (also called sink) consumes as
soon as producer (also called source)
produces

12/10/2007 CS2104, Lecture 8 58

Producer/Consumer Stream

Producer Consumer
Xs=0|1|2|3|4|5|…

Xs={Produce 0 Limit} S={Consume Xs 0}

12/10/2007 CS2104, Lecture 8 59

Example: Producer ⇔ Consumer
fun {Produce N Limit}

if N<Limit then

N|{Produce N+1 Limit}

else nil end

end

fun {Consume Xs Acc}

case Xs of X|Xr then

{Consume Xr Acc+X}

[] nil then Acc

end

end

12/10/2007 CS2104, Lecture 8 60

Stream Transducer. Example
thread Stream={Produce 0 1000} end

thread FilterResult={Filter Stream IsOdd} end

thread Result={Consume FilterResult 0} end

Transducer: a stream which reads the producer’s
output and computes a filtered stream for the
consumer.

Can be: filtering, mapping, …

Advantages of pipeline:
there is no need to wait the final value of the producer

producer, transducer, and consumer are executed
concurrently

12/10/2007 CS2104, Lecture 8 61

Simple Pipeline

Producer ConsumerTransducer

Ys = {Filter Xs ..}

YsXs

12/10/2007 CS2104, Lecture 8 62

Concurrent Streams

Often used for simulation
analog circuits

digital circuits (Section 4.3.5, pages 266-272)

lazy streams

12/10/2007 CS2104, Lecture 8 63

Client ⇔ Server

Similar to producer ⇔ consumer

Typical scenario:
more clients than servers

server has a fixed identity

clients send messages to server

server replies

See Next Lecture: message sending

12/10/2007 CS2104, Lecture 8 64

Fairness

Essential that even though producer can
always produce, consumer also gets a
chance to run

Threads are scheduled with fairness
if a thread is runnable, it will eventually run

12/10/2007 CS2104, Lecture 8 65

Thread Scheduling

More guarantees than just fairness

Threads are given a time slice to run
approximately 10ms

when time slice is over: thread is preempted

next runnable thread is scheduled

Can be influenced by priorities
high, medium, low

controls relative size of time slice (Sections 4.2.4-4.2.6)

12/10/2007 CS2104, Lecture 8 66

Summary so far

Threads
suspend and resume automatically

controlled by data-flow variables

cheap

execute fairly according to time-slice

Pattern
producer ⇔ transducer ⇔ consumer

12/10/2007 CS2104, Lecture 8 67

Demand Driven Execution

12/10/2007 CS2104, Lecture 8 68

How to Control Producers?
Eager model: the producer decides when
enough data has been sent

Possible problem: producer should not
produce more than needed

One attempt: make consumer the driver
consumer produces stream skeleton

producer fills skeleton

12/10/2007 CS2104, Lecture 8 69

Make Consumer be the Driver
fun {DConsume ?Xs A Limit}

if Limit>0 then
local X Xr in
Xs=X|Xr {DConsume Xr A+X Limit-1}

else A end
end
proc {DProduce N Xs}

case Xs of X|Xr then
X=N
{DProduce N+1 Xr}

end
end

12/10/2007 CS2104, Lecture 8 70

Overall program :

local Xs S in

thread {DProduce 0 Xs} end

thread S={DConsume Xs 0 150000} end

{Browse S}

end

Note that consumer controls how many elements are needed.

12/10/2007 CS2104, Lecture 8 71

Bounded Buffer

Eager – producer may run ahead

Demand-driven – consumer in control but
more complex execution.

Compromise : Bounded Buffer

12/10/2007 CS2104, Lecture 8 72

Bounded Buffer

Producer ConsumerBuffer

{Buffer 4 Xs Ys}

Ys=0|_Xs=0|1|2|..

3

Xs={Produce 0 Limit} S={Consume Ys 0}

12/10/2007 CS2104, Lecture 8 73

Bounded Buffer Code

proc {Buffer N Xs Ys}
fun {Startup N ?Xs}

if N==0 then Xs
else Xr in Xs=_|Xr {Startup N-1 Xr} end

end
proc {AskLoop Ys ?Xs ?End}

case Ys of Y|Yr then Xr End in
Xs=Y|Xr % get element from buffer
End=_|End2 % replenish the buffer
{AskLoop Yr Xr End2}

[] nil then End=nil
end

end
End={Startup N Xs}

in
{AskLoop Ys Xs End}

end

input output

buffer end

12/10/2007 CS2104, Lecture 8 74

Lazy Streams

Better solution for demand-driven concurrency
Use Lazy Streams

That is consumer decides, so producer runs on
request.

12/10/2007 CS2104, Lecture 8 75

Needed Variables

Idea:
start execution,

when value for variable needed

suspend on the variable

Value for variable needed…

…a thread suspends on variable!

12/10/2007 CS2104, Lecture 8 76

Lazy Execution (Reminder)

Up to now the execution order of each thread follows
textual order.

Each statement is executed in order strict order,
whether or not its results are needed later.

This execution scheme is called eager execution, or
supply-driven execution

Another execution order is to execute each statement
only if its results are needed somewhere in the
program

This scheme is called lazy evaluation, or demand-
driven evaluation

12/10/2007 CS2104, Lecture 8 77

Lazy Execution. Reminder
declare

fun lazy {F1 X} 2*X end

fun {F2 Y} Y*Y end

B = {F1 3}

{Browse B}

C = {F2 4}

{Browse C}

A = B+C

F1 is a lazy function
B = {F1 3} is executed only if its result is
needed in A = B+C

nothing (simply unbound B)

display 16

display 6 for B

12/10/2007 CS2104, Lecture 8 78

Example
declare
fun lazy {F1 X} 2*X end
fun lazy {F2 Y} Y*Y end
B = {F1 3}
{Browse B} % nothing (simply unbound B)
C = {F2 4}
{Browse C} % nothing (simply unbound C)

F1 and F2 are now lazy functions
B = {F1 3} and C = {F2 4} are executed only
if their results are needed in an expression,
like: A = B+C

12/10/2007 CS2104, Lecture 8 79

Example
declare
fun lazy {F1 X} 2*X end
fun lazy {F2 Y} Y*Y end
B = {F1 3}
{Browse B} % display 6
C = {F2 4}
{Browse C} % display 16
A = B+C

F1 and F2 are now lazy functions
B = {F1 3} and C = {F2 4} are executed
because their results are needed in A = B+C

12/10/2007 CS2104, Lecture 8 80

Example

In lazy execution, an
operation suspends until
its result is needed

Each suspended
operation is triggered
when another operation
needs the value for its
arguments

In general, multiple
suspended operations
can start concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Demand

12/10/2007 CS2104, Lecture 8 81

Example II

In data-driven
execution, an operation
suspends until the values
of its arguments results
are available

In general, the
suspended computation
can start concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Data driven

12/10/2007 CS2104, Lecture 8 82

Triggers

A by-need trigger is a pair (F,X):
a zero-argument function F

a variable X

Trigger creation

X={ByNeed F} or equivalently

{ByNeed (proc {$ A} A={F} end) X}

If X is needed, then X={ByNeed F} means:
execute thread X={F} end

delete trigger, X becomes a normal variable

12/10/2007 CS2104, Lecture 8 83

Example 1: ByNeed
X={ByNeed fun {$} 4 end}

Executing {Browse X}

Shows: X (meaning not yet triggered)

Browse does not need the value of X

Executing T : Z=X+1

X is needed

current thread T blocks (X is not yet bound)

new thread created that binds X to 4

thread T resumes and binds Z to 5

12/10/2007 CS2104, Lecture 8 84

Example 2: ByNeed

declare

fun {F1 X} {ByNeed fun {$} 2*X end} end

fun {F2 Y} {ByNeed fun {$} Y*Y end} end

B = {F1 3}

{Browse B} % simply display B

C = {F2 4}

{Browse C} % simply display C

12/10/2007 CS2104, Lecture 8 85

Example 2: ByNeed

declare

fun {F1 X} {ByNeed fun {$} 2*X end} end

fun {F2 Y} {ByNeed fun {$} Y*Y end} end

B = {F1 3}

{Browse B} % display 6

C = {F2 4}

{Browse C} % display 16

A = B+C

12/10/2007 CS2104, Lecture 8 86

Example 3: ByNeed

thread X={ByNeed fun {$} 3 end} end

thread Y={ByNeed fun {$} 4 end} end

thread Z=X+Y end

Considering that each thread executes atomically,
there are six possible executions.

For lazy execution to be declarative, all of these
executions must lead to equivalent stores.

The addition will wait until the other two triggers are
created, and these triggers will then be activated.

12/10/2007 CS2104, Lecture 8 87

Lazy Functions

fun lazy {Produce N}

N|{Produce N+1}

end

can be implemented with by-need triggers

fun {Produce N}

{ByNeed fun {$} N|{Produce N+1} end}

end

12/10/2007 CS2104, Lecture 8 88

Lazy Production

fun lazy {Produce N}

N|{Produce N+1}

end

Intuitive understanding: function executes
only, if its output is needed

12/10/2007 CS2104, Lecture 8 89

Example: Lazy Production

fun lazy {Produce N}

N|{Produce N+1}

end

declare Ns={Produce 0}

{Browse Ns}

Shows again Ns

Remember: Browse does not need the values of
the variables

12/10/2007 CS2104, Lecture 8 90

Example: Lazy Production

fun lazy {Produce N}

N|{Produce N+1}

end

declare Ns={Produce 0}

Execute _=Ns.1
needs the variable Ns

Browser now shows 0|_ or 0|<Future>

12/10/2007 CS2104, Lecture 8 91

Example: Lazy Production

fun lazy {Produce N}

N|{Produce N+1}

end

declare Ns={Produce 0}

Execute _=Ns.2.2.1
needs the variable Ns.2.2

Browser now shows 0|1|2|_

12/10/2007 CS2104, Lecture 8 92

Everything can be Lazy!

Not only producers, but also transducers can
be made lazy

Sketch
consumer needs variable

transducer is triggered, needs variable

producer is triggered

12/10/2007 CS2104, Lecture 8 93

Lazy Transducer. Example

fun lazy {Inc Xs}

case Xs

of X|Xr then X+1|{Inc Xr}

end

end

declare Xs={Inc {Inc {Produce N}}}

12/10/2007 CS2104, Lecture 8 94

Global Summary

Declarative concurrency

Mechanisms of concurrent program

Streams

Demand-driven execution
execute computation, if variable needed

need is suspension by a thread

requested computation is run in new thread

By-Need triggers

Lazy functions

12/10/2007 CS2104, Lecture 8 95

Reading suggestions

Chapter 4, Sections 4.1-4.5 from [van
Roy,Haridi; 2004]

Exercises 4.11.1-4.11.16 from [van
Roy,Haridi; 2004]

