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Lecture 9 

More on Concurrency
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Review of Last Lecture

� Declarative concurrency
� Mechanisms for concurrency
� Streams
� Demand-driven execution
� By-Need triggers

� execute computation, if variable needed
� needs suspension by a thread
� requested computation is running in new thread

� Lazy functions
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Overview

� Stream Object
� Thread Module and Composition
� Soft Real-Time Programming
� Agents and Message Passing
� Protocols
� Erlang
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Stream Object

proc {StreamObject S1 X1 ?T1}

case S1 of M|S2 then N X2 T2 in 

{NextState M X1 N X2}

T1 = N|T2  {StreamObject S2 X2 T2}

[] nil then T1=nil end

end

declare S0 X0 T0

thread {StreamObject S0 X0 T0} end 

input output
accumulator

    � �

    �

StreamObject :: [A], B, [C]  Æ ()
NextState :: A,B, C,A Æ ()
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Making Stream the Driver

proc {StreamObject ?S1 X1 ?T1} M|S2
S1=M|S2
local N X2 T2 in 

{NextState M X1 N X2}
T1 = N|T2  
{StreamObject S2 X2 T2}

end
end

declare S0 X0 T0
thread {StreamObject S0 X0 T0} end 

input output
accumulator

    � �

  �
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Thread Operations
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Common Operations on Thread

{Thread.this} return thread id
{Thread.state T} return current state of T
{Thread.suspend T} suspend T
{Thread.resume T} resume T 
{Thread.prempt T} preempt T
{Thread.terminate T} terminate T
{Thread.injectException T} raise E in thread T
{Thread.setPriority T P} set priority of T
{Thread.setThisPriority P} set priority of thread
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Common Property Operations

{Property.get priorities} get current priority ratios

{Property.put priorities set system priority ratios
p(high:X medium:Y)}
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Coroutine
A coroutine is a nonpremptive thread

Procedure

Thread

{P}

return

Coroutine

C2={Spawn P} {Resume C2} {Resume C2}

{Resume C1} {Resume C1}

thread {P} end {Wait X}

X=unit
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Basic Mechanism for Coroutines
fun {Spawn P}

PId in
thread 

Pid={Thread.this}
{Thread.suspend Pid}
{P}

end
PId

end

proc {Resume Id}
{Thread.resume Id}
{Thread.suspend {Thread.this}}

end

Spawn :: (()Æ()) Æ Id
Resume :: Id Æ ()
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Fork-Join for Threads

local X1 X2 .. Xn-1 Xn in

thread <stmt1> X1=unit end

thread <stmt2> X2=X1 end

:

thread <stmtn> Xn=Xn-1 end

{Wait Xn}

end

wait for all threads to complete through variable binding
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Barrier Synchronization

proc {Barrier Ps}
fun {Loop Ps L}

case Ps of P|Pr then M in
thread {P} M=L end
{Loop Pr M}

[] nil then L
end

end
S={Loop Ps unit}

in
{Wait S}

end

wait for all threads to complete

list of threads
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Soft Real-Time Programming

� Real-time
� control computations by time
� animations, simulations, timeouts, …

� Hard real-time has firm deadlines, which have to be 
respected all the time, without any exception (medical 
equipments, air traffic control, …)

� Soft real-time is used in less demanding situations.
� suggested time
� no time guarantees
� no hard deadlines as for controllers, etc.
� Examples: telephony, consumer electronics, …
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The Time module

� The Time module contains a number of useful 
soft real-time operations: 
� Delay

� Alarm

� Time

� {Delay N} suspends the thread for N
milliseconds

� Useful for building abstractions
� timeouts
� repeating actions
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The Time module

� {Alarm N U} creates a new thread that binds 
U to unit after at least N milliseconds. 

� Alarm can be implemented with Delay
� {Time.time} returns the integer number of 

seconds that have passed since the current 
year started 
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Soft Real-Time Programming. Example
functor
import

Browser(browse:Browse)
define

proc {Ping N}
if N == 0 then {Browse ’ping terminated’}
else {Delay 500} {Browse ping} {Ping N - 1} end

end
proc {Pong N}

{For 1 N 1
proc {$ I} {Delay 600} {Browse pong} end }
{Browse ’pong terminated’}

end
in

{Browse ’game started’}
thread {Ping 6} end
thread {Pong 6} end

end
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Soft Real-Time Programming. Example
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Agents and
Message Passing Concurrency
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Client-Server Architectures

� Server provides some service
� receives message
� replies to message
� examples: web server, mail server, …

� Clients know address of server and use 
service by sending messages

� Server and clients run independently
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Client-Server Applications …

� With declarative programming, it is impossible 
to write a client/server program where the 
server does not know which client will send 
the next message.

� Observable nondeterministic behavior: the 
server can receive information in any order 
from two independent clients.

� The server has only an input stream from 
which it reads commands.
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The Message-Passing Concurrent Model
� Extends the declarative concurrent model by 

adding one new concept, an asynchronous 
communication channel. 

� Any client can send messages to the channel at 
any time and the server can read all the 
messages from the channel (no limitations).  

� A client/server program may give different results 
on different executions because the order of 
clients’ sends is not fixed.

� Message-passing model is nondeterministic
and therefore no longer declarative.
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Peer-to-Peer Architectures

� Similar to Client-Server:
� every client is also a server
� communicate by sending messages to each other

� We call all these guys (client, server, peer)
agent

� In [van Roy, Haridi; 2004] book, this is called 
portObject
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Common Features

� Agents
� have identity mail address
� receive messages mailbox
� process messages ordered mailbox
� reply to messages pre-addressed return letter

� Now how to cast into programming language?
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Message Sending

� Message data structure
� Address port
� Mailbox stream of messages
� Reply dataflow variable in message

Type  ::  Port X

message type
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Ports
� A port is an ADT with two operations:

� {NewPort S P} or  equivalently P={NewPort S}: 
create a new port with entry point (channel) P and 
stream S.

� {Send P X}: append X to the stream corresponding 
to the entry point P.

� Successive sends from the same thread appear 
on the stream in the same order in which they 
were executed. 

� This property implies that a port is an 
asynchronous FIFO (first-in, first-out) 
communication channel.
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Port and its Stream

P

Stream

{Send P X1}

{Send P X2}

{Send P Xn}

{NewPort P S}

S

NewPort :: [X] Æ Port X
Send  :: Port X, X Æ()
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Ports

� Asynchronous: a thread can send a message 
at any time and it does not need to wait for any 
reply. 

� As soon as the message is in the 
communication channel, the thread can 
continue executing. 

� Communication channel can contain many 
pending messages, which are waiting to be 
handled.
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Example

declare S P

P={NewPort S}

{Browse S}

� Displays initially S<future> (or _)



19Oct2007 CS2104, Lecture 9 29

Example

declare S P

P={NewPort S}

{Browse S}

� Execute {Send P a}

� Shows a|_<future>
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Example

declare S P

P={NewPort S}

{Browse S}

� Execute {Send P b}

� Shows a|b|_<future>

� Note that {Send P a} and {Send P b} are in 
the same thread
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Semantics of Ports
� Extend the execution state of the declarative model by 

adding a mutable store µ
� This store contains ports, i.e. pairs of the form x : y, 

where x and y are variables of the single-assignment 
store (x is the channel’s name and y is the current last 
position of stream). 

� The mutable store is initially empty. 
� The semantics guarantees that x is always bound to a 

name value that represents a port and that y is 
unbound. 

� The execution state becomes a triple (MST, , µ) (or  
(MST, , µ, W) if the trigger store is considered).
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The Message-Passing Concurrent Model
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The NewPort Operation

� The semantics of ({NewPort <x> <y>}, E) is:
� Create a fresh port name (also called unique 

address) n.
� Bind E(<y>) and n in the store.
� If the binding is successful, then add the pair 

E(<y>) : E(<x>) to the mutable store µ.
� If the binding fails, then raise an error condition.



19Oct2007 CS2104, Lecture 9 34

The Send Operation
� The semantics of ({Send <x> <y>},E) is:

� If the activation condition is true (E(<x>) is 
determined), then:
� If E(<x>) is not bound to the name of a port, then raise 

an error condition.
� If the mutable store contains E(<x>) : z, then: 

� Create a new variable z0 in the store.
� Update the mutable store to be E(<x>) : z0.
� Create a new list pair E(<y>)|z0 and bind z with it in 

the store.
� If the activation condition is false, then suspend 

execution.
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Question
declare S P 

P={NewPort S}

{Browse S}

thread {Send P a} end

thread {Send P b} end

� What will the Browser show?
� Note that each {Send P …} is in a separate 

thread 
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Question
declare S P 

P={NewPort S}

{Browse S}

thread {Send P a} end
thread {Send P b} end

� Which will the Browser show?
� Either

� a|b|_<future> or
� b|a|_<future>

� non-determinism: we can’t say what
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Answering Messages

� Traditional view

� Include the entry port P’ of the sender in the 
message:
{Send P pair(Message P’)}

� Receiver sends answer message to P’
{Send P’ AnsMessage}
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Answering Messages

� Do not reply by address, use something like 
pre-addressed reply envelope
� dataflow variable!!!

� {Send P pair(Message Answer)}

� Receiver can bind Answer!



19Oct2007 CS2104, Lecture 9 39

Port Objects
� A port object is a combination of one or more 

ports and a stream object. 
� This extends stream objects in two ways: 

� First, many-to-one communication is possible: many 
threads can reference a given port object and send 
to it independently. 
� This is not possible with a stream object because it has to 

know where its next message will come from. 
� Second, port objects can be embedded inside data 

structures (including messages). 
� This is not possible with a stream object because it is 

referenced by a stream that can be extended by just one 
thread.
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Port Objects. Distributed Algorithm
declare P1 P2 ... Pn in
local S1 S2 ... Sn in
{NewPort S1 P1}
{NewPort S2 P2}
...
{NewPort Sn Pn}
thread {RP S1 S2 ... Sn} end

end
� The thread contains a recursive procedure RP that 

reads the port streams and performs some action for 
each message received.

� Sending a message to the port object is just sending a 
message to one of the ports.

� Similar terms: agent, process (Erlang), active object
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A Math Agent

proc {Math E}

case E

of add(N M Answer) then Answer=N+M

[] mul(N M Answer) then Answer=N*M

[] int(Formula Answer) then
Answer = …

end
end

� Remark: Answer is included in the stream’s element 
X of {Send EntryPoint X}
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Making the Agent Work (Port Creation)
local S in
MP = {NewPort S}
proc {MathProcess Ms}
case Ms of M|Mr then
{Math M} 
{MathProcess Mr}

end
end
thread {MathProcess S} end

end

� MathProcess is a recursive procedure that reads the 
port streams and performs some action for each 
message received.
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Making the Agent Work (Sending a Message)

declare A B

thread % client 1

{Send MP add(2 3 A)}

{Browse A}

end

thread % client 2

{Send MP mul(2 3 B)}

{Browse B}

end

� A and B are two dataflow variables which will be 
bound in port MP 
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Recall Higher-Order Construct

proc {ForAll Xs P}

case Xs

of nil  then skip
[] X|Xr then {P X} {ForAll Xr P}

end
end

� Call procedure P for all elements in Xs

ForAll :: {[X], XÆ()} Æ ()
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Smells of Higher-Order…

� Using ForAll, we have

proc {MathProcess Ms}

{ForAll Ms Math}

end
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Making the Agent Work

declare MP in
local S in

MP = {NewPort S}

thread {ForAll S Math} end

end
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Making the Agent Work

declare MP in
local S in

MP = {NewPort S}

thread for M in S do {Math M} end end

end

� The stream S is private (local) to the port.
� Math is associated to the port MP
� MP and Math can become arguments of a 

generic function.
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Smells Even Stronger…

� Programming with port objects can be 
abstracted into a function

fun {NewAgent Process}

Port Stream

in
Port={NewPort Stream}

thread {ForAll Stream Process} end
Port

end

� So, the previous port creation is equivalent with:
MP = {NewAgent Math}

NewAgent :: {XÆ()} Æ Port X
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Why Do Agents/ Processes Matter?

� Model to capture communicating entities
� Each agent is simply defined in terms of how it 

replies to messages
� Each agent has a thread of its own

� no screw-up with concurrency
� we can easily extend the model so that each 

agent has a state (encapsulated)
� Extremely useful to model distributed 

systems!
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Summary so far

� Ports for message sending
� use stream (list of messages) as mailbox
� port serves as unique address

� Use agent abstraction
� combines port with thread running agent
� simple concurrency scheme

� Introduces non-determinism… and state!
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Protocols
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Protocols

� Protocol: is a set of rules for sending and 
receiving messages
� programming with agents

� Most well-known protocols:
� the Internet protocols (TCP/IP, HTTP, FTP, etc.) 
� LAN (Local Area Network) protocols such as 

Ethernet and DHCP (Dynamic Host Connection 
Protocol), …
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RMI (Remote Method Invocation)
� It seems to be the most popular of the simple 

protocols. 
� It allows an object to call another object in a different 

operating system process, either on the same 
machine or on another machine connected by a 
network. 

� RMI is a descendant of the RPC (Remote Procedure 
Call), which was invented in 1980, before object-
oriented programming became popular. 

� RMI became popular once objects started replacing 
procedures as the remote entities to be called. 

� We assume that a “method” is simply what a port 
object does when it receives a particular message.
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Differences between RPC and RMI

� Faster than RMI
� Depends on the 

platform 
� Has to convert the 

arguments between 
architectures so that 
each computer can 
use its native datatype

� Is part of Java’s object-
oriented approach

� Allows multiple-concurrent 
method invocation

� Is portable (doesn’t depend 
on the operating system)

� Good security system
� To call outside methods, 

RMI needs JNI, JDBC, RMI-
IIOP, RMI-IDL, etc.

RPC RMI
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� A client sends a request to a server and then waits for 
the server to send back a reply.

� C stands for client, S for server, idle means “available 
to service requests”, suspended means “not available”.
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The Server as a Port Object
declare

proc {ServerProc Msg}

case Msg

of calc(X Y) then

Y = X * X + 1.0

end

end

Server={NewAgent ServerProc}

� The second argument Y of calc is bound by the server. 
� The server computes the polynomial X * X + 1.0
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What is NewAgent? (Reminder)

fun {NewAgent Process}

Port Stream

in
Port={NewPort Stream}

thread {ForAll Stream Process} end
Port

end
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The Client (using RMI)
declare
proc {ClientProc Msg}

case Msg
of work(Y) then

Y1 Y2 in
{Send Server calc(1.0 Y1)}
{Wait Y1}
{Send Server calc(2.0 Y2)}
{Wait Y2}
Y = Y1 + Y2

end
end
Client={NewAgent ClientProc}
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The Client as a Port Object II
local X in

{Send Client work(X)}

{Browse X}

end

� Difference between the client and server: 
� The client definition references the server directly but the server 

definition does not know its clients. 
� The server gets a client reference indirectly, through the 

argument Y, i.e. the dataflow variable that is bound to the 
answer by the server. 

� The client waits until receiving the reply before continuing.
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What is Wait?
� {Wait X} suspends the thread until X becomes 

determined, i.e. also called explicit synchronization on 
variable X

declare Y

{ByNeed proc {$ X} X=1 end Y}

{Browse Y}

{Wait Y}

<statement>

� Display Y in the Browser. 
� To access Y, the operation {Wait Y} will trigger the 

producing procedure. 
� <statement> will be executed only after Y is bound
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Characteristics of RMI 

� In the previous example, all messages are 
executed sequentially by the server.

� In practice, some RMI implementations do 
things somewhat differently, i.e. they allow 
multiple calls from different clients to be 
processed concurrently.

� May use different languages and different OS.



19Oct2007 CS2104, Lecture 9 62

Asynchronous RMI

� Similar to RMI, except that the client continues 
execution immediately after sending the 
request.

� The client is informed when the reply arrives. 
� So, two requests can be done in rapid 

succession. 
� Motivation: If communications between client 

and server are slow, then this will give a large 
performance advantage over RMI. 
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The Asynchronous RMI Client 
declare
proc {ClientProc Msg}

case Msg
of work(Y) then Y1 Y2 in

{Send Server calc(1.0 Y1)}
{Send Server calc(2.0 Y2)}
Y = Y1 + Y2

end
end
Client={NewAgent ClientProc}
local X in

{Send Client work(X)}
{Browse X}

end
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Characteristics of Asynchronous RMI 

� Message sends overlap. Client waits for both 
results Y1 and Y2 before doing the addition 
Y1+Y2.

� The server is the same as with standard RMI. 
It still receives messages one by one and 
executes them sequentially. 

� Requests are handled by the server in the 
same order as they are sent and the replies 
arrive in that order as well. 
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RMI with Callback

� Server may need to call back client to fulfill 
request, e.g. check on some special values.

proc {ServerProc Msg}

case Msg

of calc(X ?Y Client) then X1 D in

{Send Client delta(D)}

X1=X+D

Y = X * X + 1.0

end

end

Server={NewAgent ServerProc}

callback



19Oct2007 CS2104, Lecture 9 67

RMI with Callback

� Does this work?

proc {ClientProc Msg}

case Msg

of work(?Z) then Y in

{Send Server calc(10.0 Y Client)}

Z=Y+100.0

[] delta(?D) then D=1.0

end

end

Client={NewAgent ClientProc}

{Browse {Send Client work($)}}

No! It deadlocks as server and 
client waiting for each other. 
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Solution – Use Thread
proc {ClientProc Msg}

case Msg

of work(?Z) then Y in

{Send Server calc(10.0 Y Client)

thread Z=Y+100.0 end
[] delta(?D) then D=1.0

end

end

add thread to allow 
client to proceed. 
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RMI with Callback (using thread)

client serverspawned
thread

delta

calc

calc (more)

finish client
calc
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RMI with Callback (using continuation)

� Possible to avoid thread.

proc {ServerProc Msg}

case Msg

of calc(X Client Cont) then X1 D Y in

{Send Client delta(D)}

X1=X+D

Y = X * X + 1.0

{Send Client Cont#Y}

end

end

Server={NewAgent ServerProc}

continuation
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Solution – Using Continuation Record
proc {ClientProc Msg}

case Msg

of work(?Z) then Y in

{Send Server calc(10.0 Client cont(Z))}

[] cont(Z)#Y then Z=Y+100.0

[] delta(?D) then D=1.0

end

end

Client={NewAgent ClientProc}

{Browse {Send Client work($)}}
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RMI with Callback 
(using continuation record)

client server

calc

delta

calc (more)

cont
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Erlang
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Erlang

� Developed by Ericsson for telecoms 
application.

� Features : fine grain parallelism, extreme 
reliability, hot code updates.

� Functional core – dynamically typed strict 
functional language. 

� Message-passing extension – processes 
communicate by sending messages 
asynchronously in FIFO order.
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Functions in Erlang

� Uses pattern-matching and Prolog syntax

factorial(0) -> 1;

factorial(N) when N>0 -> N*factorial(N-1).



19Oct2007 CS2104, Lecture 9 76

Pattern-Matching with Tuple

area({square, Side}) -> Side*Side;

area({rectangle,X,Y}) -> X*Y;

area({circle, R}) -> 3.14159*R*R;

area({triangle, A,B,C}) -> … ;

tuple
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Concurrency and Message Passing

� spawn(M,F,A) creates a new process and 
returns its Pid . Note that M-module, F-initial 
function, A-argument list. 

� Send operation (written as Pid!msg) is an 
asynchronous message sending.

� receive operation removes message from a 
mailbox. It uses pattern-matching to select 
messages for removal
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An Erlang Process

-module(areaserver)

-export([start/0, loop/0]

start() -> spawn(areaserver, loop, []).

loop() -> receive 

{From, Shape} -> 

From!area(Shape),

loop()

end.

send

receive

spawn
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Receive Construct

receive

Pattern1 [when Guard1] -> Body1;

:

PatternN [when GuardN] -> BodyN;

[after Expr -> BodyT;]

end

This expression blocks until a message matching 
one of patterns arrives or when timeout occurs
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Summary

� Stream Object
� Thread Module and Composition
� Soft Real-Time Programming
� Agents and Message Passing
� Protocols
� Erlang


