
Programming Language Concepts, cs2104
Tutorial 1. Answers

Exercise 1. (Variables and Cells) Given:
local X in
X=23
local X in
X=44
end
{Browse X}
end

The second uses a cell:
local X in
X={NewCell 23}
X:=44
{Browse @X}
end

In the first, the identifier X refers to two different variables. In the second,
X refers to a cell. What does Browse display in each fragment? Explain.

Answer.
First program: 23, since {Browse X} is visible to the outermost “local”
statement.
Second program: 44, because X is a multiple-assignment variable (cell).

Exercise 2. (Accumulators) This exercise investigates how to use cells together
with functions. Let us define a function {Accumulate N} that accumulates all its
inputs, i.e., it adds together
all the arguments of all calls. Here is an example:

{Browse {Accumulate 5}}
{Browse {Accumulate 100}}
{Browse {Accumulate 45}}

This should display 5, 105, and 150, assuming that the accumulator contains zero
at the start. Here is a wrong way to write Accumulate:

declare
fun {Accumulate N}
Acc in

Acc={NewCell 0}
Acc:=@Acc+N
@Acc

end
What is wrong with this definition? How would you correct it?

Answer.
It will display: 5 100 45
The reason is because the cell Acc is local to every call of Accumulate. A
possible solution is to make the cell Acc visible for all calls of Accumulate.

declare
Acc={NewCell 0}
fun {Accumulate N}

Acc:=@Acc+N
@Acc

end
{Browse {Accumulate 5}}
{Browse {Accumulate 100}}
{Browse {Accumulate 45}}

Exercise 3. (Values as trees) Given is the following declaration and assignment.
declare

R=r(1:[a b c] 4:[d [e [f]]] z:q(g h [10 11 [12 13]]))
Draw the value as a tree. In the following you have to give an expression
composed of dot, width, and label functions that return the desired value. For
example, for the value g the expression is R.z.1 and for r it is {Label R}. If
there is more than one possibility, give at least two expressions.
1. b 2. q 3. 12 4. nil
5. '|' 6. 3 7. h 8. 2

Answer.
1. the value b can be given by the expression: R.1.2.1
2. the value q can be given by the expression: {Label R.z}
3. the value 12 can be given by the expression: R.z.3.2.2.1.1
4. the value nil can be given by the expressions:
a. R.1.2.2.2
b. R.4.2.2
5. the value '|' can be given by the expressions:
a. {Label R.1}
b. {Label R.1.2}
6. the value 3 can be given by the expressions:
a. {Width R}
b. {Width R.z}
7. the value h can be given by the expression: R.z.2
8. the value 2 can be given by the expressions:
a. {Width R.1}
b. {Width R.1.2}

Exercise 4. (Traversing trees) We have seen a way to traverse in preorder (first
the root, then the left child, followed by the right child). It is:

declare
Root=node(left:X1 right:X2 value:0)
X1=node(left:X3 right:X4 value:1)
X2=node(left:X5 right:X6 value:2)
X3=node(left:nil right:nil value:3)
X4=node(left:nil right:nil value:4)
X5=node(left:nil right:nil value:5)
X6=node(left:nil right:nil value:6)
{Browse Root}
proc {Preorder X}

if X \= nil then {Browse X.value}
if X.left \= nil then {Preorder X.left} end
if X.right \= nil then {Preorder X.right} end

end
end
{Preorder Root}

Design the other known strategies, namely traverse in inorder (first the left
child, then the root, followed by the right child) and postorder (first the left
child, then the right child, followed by the root).

Answer.
proc {Inorder X}

// pre X \= nil
if X.left \= nil then {Inorder X.left} end
{Browse X.value}
if X.right \= nil then {Inorder X.right} end

end
end
proc {Postorder X}

// pre x \= nil
if X.left \= nil then {Postorder X.left} end
if X.right \= nil then {Postorder X.right} end
{Browse X.value}
end

Using case:
proc {Inorder X}

case X of nil then skip
[] node(left:L value:V right:R) then

{Inorder L} {Browse V} {Inorder R} end
end

Exercise 5. (Pattern Matching for Head and Tail)
Give definitions for Head and Tail that use pattern matching.

Answer.
declare
fun {Head X|_}

X
end
fun {Tail _|X}

X
end
{Browse {Head [1 2 3]}}
{Browse {Tail [1 2 3]}}

Exercise 6. (Length of a List) Try the version of Length as presented in the
lecture.
Since X from the pattern is not used in the right-hand side of the case, it can
be
replaced with the universal operator (“_” will not be bound to anything). Write
other
version, using the equality operator. Is there any more efficient way to
implement Length?

Answer.
Using universal operator (“_”):

fun {Length Xs}
case Xs of

nil then 0
[] _|Xr then 1+{Length Xr} end

end
Using the equality operator:

fun {Length L}
if L==nil then 0
else 1 + {Length {Tail L}} end

end

==
=

Programming Language Concepts, cs2104
Tutorial 2. Answers

Exercise 1. (Finding an Element in a List) Give a definition of {Member Xs Y}
that tests whether Y is an element of Xs. For this assignment you have to use
the truth values true and false. The equality test (that is ==) returns truth
values and a function returning truth values can be used as condition in an if-
expression. For example, the call {Member [a b c] b} should return true, whereas
{Member [a b c] d} should return false.

Answer.
declare
fun {Member Xs Y}

case Xs of
nil then false

[] H|T then
if H==Y then true
else {Member T Y}
end

end
end
{Browse {Member [a b c] d}}
{Browse {Member [a b c] b}}

Exercise 2. (Taking and Dropping Elements) Write two functions {Take Xs N} and
{Drop Xs N}. The call {Take Xs N} returns the first N elements of Xs whereas the
call {Drop Xs N} returns Xs without its first N elements. For example, {Take [1
4 3 6 2] 3} returns [1 4 3] and {Drop [1 4 3 6 2] 3} returns [6 2].

Answer.
Solution 1.
declare
fun {Take Xs N}
if N==0 then nil
else if Xs \= nil then

Xs.1|{Take Xs.2 N-1}
else error
end

end
end
{Browse {Take [1 4 3 6 2] 3}}
{Browse {Take [1 4 3 6 2] 7}}
fun {Drop Xs N}
if N==0 then Xs
else if Xs \= nil then {Drop Xs.2 N-1}

else error
end

end
end
{Browse {Drop [1 4 3 6 2] 4}}
{Browse {Drop [1 4 3 6 2] 6}}

Solution 2. The Take function is:
declare
fun {TakeAux Xs N I}

case Xs of
nil then if I =< N then error end

[] H|T andthen I =< N then H|{TakeAux T N I+1}

else nil
end

end
fun {Take Xs N}

{TakeAux Xs N 1}
end
{Browse {Take [1 4 3 6 2] 3}}
{Browse {Take [1 4 3 6 2] 7}}

The Drop function is:
declare
fun {DropAux Xs N I}

case Xs of nil then nil
[] H|T then

if I < N then {DropAux T N I+1}
else T
end

end
end
fun {Drop Xs N}

{DropAux Xs N 1}
end
{Browse {Drop [1 4 3 6 2] 7}}
{Browse {Drop [1 4 3 6 2] 3}} % returns [6 2].

Exercise 3. (Zip and UnZip) Two important functions that convert pairlists to
pairs of lists and vice versa are Zip and UnZip.
a) Implement a function Zip that takes a pair Xs#Ys of two lists Xs and Ys (of
the same length) and returns a pairlist, where the first field of each pair is
taken from Xs and the second from Ys. For example, {Zip [a b c]#[1 2 3]} returns
the pairlist [a#1 b#2 c#3].
b) The function UnZip does the inverse, for example {UnZip [a#1 b#2 c#3]}
returns [a b c]#[1 2 3]. Give a specification and implementation of UnZip.

Answer.
a) The first solution refers to the case when the lists have the same length:
declare
fun {Zip Xs#Ys}

case Xs#Ys
of nil#nil then nil
[] (X|Xr)#(Y|Yr) then X#Y|{Zip Xr#Yr}
end

end
{Browse {Zip [a b c]#[1 2 3]}}

a) The second solution covers the cases when the lists may have also different
lengths:
declare
fun {Zip X}

case X of nil#nil then nil
[] X#nil then {Browse ’First list is too long’} X
[] nil#X then {Browse ’Second list is too long’} X
[] (H1|T1)#(H2|T2) then

H1#H2|{Zip T1#T2}
end

end
{Browse {Zip [a b c]#[1 2 3]}}

{Browse {Zip [a b c d]#[1 2 3]}}
{Browse {Zip [a b c]#[1 2 3 4]}}

b) A condensed solution:
declare
fun {UnZip XYs}

case XYs
of nil then nil#nil
[] X#Y|XYr then

Xr#Yr={UnZip XYr}
in

(X|Xr)#(Y|Yr)
end

end
{Browse {UnZip [a#1 b#2 c#3]}}

b) An equivalent solution, where the code is explained in some details:
declare
fun {Unzip X}

case X
of nil then nil#nil
[] (H1#H2|T) then

Local Xr Yr %Xr and Yr are local variables
in
Xr#Yr={Unzip T} %when coming back from the recursion,

%Xr and Yr will be bound
(H1|Xr)#(H2|Yr) %construct the returned value

end
end

end
{Browse {Unzip [a#1 b#2 c#3]}}

Exercise 4. (Finding the Position of an Element in a List) Write a function
{Position Xs Y} that returns the first position of Y in the list Xs. The
positions in a list start with 1. For example, {Position [a b c] c} returns 3
and {Position [a b c b] b} returns 2.
Try two versions:
1) one that assumes that Y is an element of Xs and
2) one that returns 0, if Y does not occur in Xs.

Answer.
Solution 1. First version (assumes that element is included):
fun {Position Xs Y}
case Xs of

X|Xr then
if X==Y then 1 else 1+{Position Xr Y} end

end
end

Solution 2. Second version (not very efficient):
fun {Position Xs Y}
case Xs
of nil then 0
[] X|Xr then

if X==Y then 1
else N={Position Xr Y} in
if N==0 then 0 else N+1 end

end
end

end

Solution 3. We give an Oz program which embeds both versions, being a better
solution because it is using a tail-recursive version with an accumulator:
declare
fun {PositionAux Xs Y Pos}

case Xs of
nil then 0

[] H|T then
if H==Y then Pos
else {PositionAux T Y Pos+1}
end

end
end
fun {Position Xs Y}

{PositionAux Xs Y 1}
end
{Browse {Position [a b c] c}}
{Browse {Position [a b c b] b}}

Exercise 5. (Arithmetic Expressions Evaluation) Suppose that you are given an
arithmetic expression described by a tree constructed from tuples as follows:
1. An integer is described by a tuple int(N), where N is an integer.
2. An addition is described by a tuple add(X Y), where both X and Y are
arithmetic expressions.
3. A multiplication is described by a tuple mul(X Y), where both X and Y are
arithmetic expressions.
Implement a function Eval that takes an arithmetic expression and returns its
value. For example, add(int(1) mul(int(3) int(4))) is an arithmetic expression
and its evaluation returns 13.

Answer. (a complete solution has been done in Lecture 4, when dealing with
exceptions)
fun {Eval X}
case X

of int(N) then N
[] add(X Y) then {Eval X}+{Eval Y}
[] mul(X Y) then {Eval X}*{Eval Y}

end
end
{Browse {Eval add(int(1) mul(int(3) int(4)))}}

==
===========

Programming Language Concepts, cs2104
Tutorial 3. Answers

%Exercise1
declare
fun {Filter P Ls}

case Ls of

nil then nil
[] H|T then if {P H} then H|{Filter P T}

else {Filter P T} end
end

end
{Browse {Filter (fun {$ N} if N mod 2==0 then N>=0 else false end) [1 ~2 3 ~4]}}

%Exercise2
declare
fun {FoldL Op Z L}

case L of
nil then Z

[] H|T then {FoldL Op {Op Z H} T}
end

end
fun {FoldR Op Z L}

case L of
nil then Z

[] H|T then {Op H {FoldR Op Z T}}
end

end
fun {Max2 Z H}

if Z==neginf then H
else if Z>H then Z else H end
end

end
fun {MaxL L}

{FoldL Max2 neginf L}
end
fun {MaxR L}

{FoldR fun {$ H Z} {Max2 Z H} end neginf L}
end
{Browse {MaxL [2 4 ~6 100 40]}}
{Browse {MaxR [2 4 ~6 100 40]}}
{Browse {MaxL [~6 ~10]}}
{Browse {MaxR [~6 ~2]}}
{Browse {MaxL nil}}
{Browse {MaxR nil}}

% Exercise : Try implement Filter using FoldR!

%Exercise3
declare
fun {MapTuple T F}

local
W={Width T}
NT={MakeTuple {Label T} W}
in

for I in 1..W do
NT.I={F T.I}

end
NT
end

end
{Browse {MapTuple a(1 2 3 4) fun {$ N} N*N end}}

%Exercise4

declare
fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end
fun {FactList N}

if N==0 then nil
else {Fact N}|{FactList N-1} end

end
fun {FactLTup N}

if N==0 then 1#nil
else case {FactLTup N-1} of

F#L then local NF=N*F in
NF#(NF|L) end

end
end

end
{Browse {FactList 10}}
{Browse {FactLTup 10}.2}

