Programming Language Concepts, CS2104 (10 ${ }^{\text {th }}$ September 2007) Tutorial 3.

Exercise 1. (Filter) Using the Filter higher-order function, write an Oz function which selects from a list of integers those which are positive even. For example, if the input is $\left[\begin{array}{lllll}1 & \sim & 8 & 3 & 4\end{array}\right]$, the output should be $\left[\begin{array}{ll}8 & 4\end{array}\right]$.

Exercise 2. (Computing Maximum with Fold) Compute the maximum element from a list of numbers by folding. What is the initial value to choose for passing to FoldL or FoldR (remember: there is no smallest integer as integer precision is unlimited)? Which version of folding are you using (FoldL or FoldR)? Why?

Exercise 3. (Mapping Tuples) Develop a function $\{$ MapTuple T F\} that returns a tuple that has the same width and label as the tuple T with its fields mapped by the function F. For example,

```
local
    fun {Sq X} X*X end
in
    {MapTuple a(1 2 3) Sq}
end
```

should return a(149).
Hint: A tuple is constructed with \{MakeTuple $L \mathrm{~N}$ \}, where L is the label and N is the width of the tuple.

Exercise 4. (Tupled Recursion) Consider the following program code to compute a list of factorials.

```
fun {FactList N}
        if N==0 then nil
        else {Fact N}|{FactList N-1} end
end
fun {Fact N} if N==0 then 1 else N*{Fact N-1} end end
```

Analyse the complexity of the FactList function in terms of the number of multiplications performed. By computing both \{Fact N$\} \#\{$ FactList N$\}$ simultaneously, define a new tupled function that has a more efficient computation with fewer multiplications.

