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Exercise 1. (Free/Bound) Indicate which occurrences of variables are bound and
which ones are free in the following expressions. # marks the free vars.

1. [\ x . z#  (x (\ x. y#(z#)) )]  x#

2. (\ a b . c# d# a b) a# b# (\ c d . d c) (\ e f . f) e#

3. [ (\ u v . \ w. w (\ x. x(u)) (v)) (v#) ]  (\ z. \ y. z(y))

Exercise 2. (Substitutions) Perform the following substitutions :

1 [ x -> \ z . w  ] (\ y . x)
= \ y. (\z. w)

2 [ x -> \ z . w  ] (\ y . x x)
= (\ y . (\z.w)  (\z.w))

3 [ x -> \ z . w  ] (\ y . x ((\ x . x))
= (\ y . (\z.w) ((\ x . x))

4 [ x -> \ z . w  ] (\ x . y)
= (\x. y)

5 [ x -> \ z . w  ] (\ w . x)
= [ x -> \ z . w  ] (\ u . x)
= (\ u. (\z.w))

6 [ x -> \ z . w  ] (\ z . x)
= (\z. (\z. w))

7 [ x -> \ z . w  ] (\ z . z x)
= (\z. z (\z.w))

8 [ x -> \ x . w  ] (\ z . z w)
= (\z. z w)

Exercise 3. (Reduction) Reduce the following lambda expressions to their normal
form whenever possible.
1 P = (\ x . x (x y)) I  where I = \ u . u

=  I (I y)
=  I (y)
=  y

2 Y = \ f. Q Q   where Q = (\ x . f( x x))

= \ f. (\ x . f( x x)) (\ x . f( x x))
= \ f. f( (\ x . f( x x)) (\ x . f( x x))))
= \ f. f( f( (\ x . f( x x)) (\ x . f( x x)) ))
= \ f. f( f( f( (\ x . f( x x)) (\ x . f( x x)) )) ))
=    ....

3 L = (\ x. x x y)  (\ x. x x y) 

= (\ x. x x y) (\ x. x x y) y
= ((\ x. x x y) (\ x. x x y) y)  y
= (((\ x. x x y) (\ x. x x y) y)  y)  y
= ((((\ x. x x y) (\ x. x x y) y)  y)  y)  y
=   ....

4 (\ x. x L) M where M = (\ x . y)

=  (\ x. x L) (\ x . y)
=  (\ x . y) L
=  y

Exercise 4. (Equivalence) Consider the lambda expressions in Q 3. Determine
whether the following pairs of expressions are equivalent or not.
1 L  and I 

NO since L is non-terminating but I is

2 P and (\ x . x L) M 
Both simplifies to y

3 \ a . y   and   M
Yes, by alpha renaming

4 \ a . y  and   \ a . z 
No, since y and z are distinct free vars

Exercise 5. (Church boolean) Implement the following two boolean operators in
pure lambda calculus.

not - to negate a boolean value
or   - find the disjunction of two Boolean values
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%Exercise1

You can represent a set polymorphically using Set(X)
where X is the type of the elements.

When designing an ADT library, the most important
part is to get the type declarations correct first:

member :: Set(X), X --> Bool
union  :: Set(X), Set(X) --> Set(X)
intersect :: Set(X), Set(X) --> Set(X)

You need some constructors, eg.

newSet :: () --> Set(X)



insert :: X, Set(X) --> Set(X)
singleton :: X --> Set(X)

You also need some destructors. e.g.

chooseElem :: Set(X) --> X  // non-deterministic
subtract ::  Set(X), X --> Set(X)

You may also need more query operations:

size :: Set(X) --> Int 

Once type specification is designed, you may proceed with
implementation. For Set(X), you need to ensure that duplicates
are ignored.

%Exercise2

The type below:

isMember :: A -> [A] -> Boolean

is too general. It is not possible to support equality
test for all type A. We need to restrict the type
of A to the Eq type class, as follows (in Haskell):

isMember :: Eq A => A -> [A] -> Boolean

The Eq class is typically defined as:

class Eq A
(==) :: A, A --> Bool
(!=) :: A, A --> Bool
a != b = not(a==b)

We can define List A to be an instance of Eq if we have Eq A,
as follows:

instance Eq A => Eq (List A)
nil == nil       = true
(a:as) == nil    = false
nil  == (b:bs)   = false
(a:as) == (b:bs) = if a==b then as==bs

else false

There are many ways to implement Set A as an ordered class.
One way is to look at the cardinality, so that a set with
more elements is considered bigger. Another way is to look
at the elements of Set. Chose the largest element from both set
to compare. If they are equal, proceed to the next largest element.

%Exercise3

Double 1 is incorrect.

Double 2 is inefficient as Append is linear complexity to

the first argument.

Double 3 is implemented using a higher-order program with
accumulating function-type parameter. This is correct but
probably a bit inefficient due to the use of higher-order
program. However, its complexity remains at O(n)

The best version of tail-recursive code is to use a procedure
whereby the 2nd parameter denotes its result. In the recursion,
we first build a constructor with head = 2*H but an undefined
tail T before making a tail-recursive call. this corresponds
to how you may implement a loop-version of the code.

declare
proc {Double4 Ls Res}

case Ls of nil then Res=nil
[] H|T then local R in

Res=2*H|R
{Double4 T R} end

end
end

Thus the use of procedure and output parameter do add
some flexibility/effectiveness to Oz programming.

Tutorial 7
===========

%Exercise1
local A B C in

thread if A then B=true else B=false end end
thread if B then C=false else C=true end end
A=false

end

%Exercise2
local X Y Z in

thread if X==1 then Y=2 else Z=2 end end
thread if Y==1 then X=1 else Z=2 end end
X=1
{Browse X} {Browse Y} {Browse Z}

end

local X Y Z in
thread if X==1 then Y=2 else Z=2 end end
thread if Y==1 then X=1 else Z=2 end end
X=2
{Browse X} {Browse Y} {Browse Z}

end

%Exercise3
%Producer-driven
declare



proc {Produce N Xs Limit}
if Limit>=0 then

local Xr in
Xs=N*N|Xr
{Produce N+1 Xr Limit-1} end

else Xs=nil
end

end
fun {Consume Xs Min#Max}

case Xs of X|Xr then
{Consume Xr {Value.min Min X}#{Value.max Max X}}

else Min#Max
end

end
local Result Xs in

thread {Produce 0 Xs 100} end
thread Result={Consume Xs 0#0} end
{Browse Result}

end

%Consumer-driven
declare
proc {Produce N Xs}

case Xs of X|Xr then
X=N*N
{Produce N+1 Xr}

else Xs=nil end
end
fun {Consume Xs Min#Max Limit}
%   {Delay 1000}

if Limit>=0 then
local X Xr in
Xs=X|Xr
{Consume Xr {Value.min Min X}#{Value.max Max X} Limit-1} end

else Xs=nil Min#Max end
end

local Result Xs in
thread {Produce 0 Xs} end
thread Result={Consume Xs 0#0 100} end
{Browse Result}

end

%Bounded-buffer
declare
proc {Buffer N ?Xs Ys}

fun {Startup N ?Xs}
if N==0 then Xs
else Xr in Xs=_|Xr {Startup N-1 Xr} end

end
proc {AskLoop Ys ?Xs ?End}

case Ys of Y|Yr then Xr End2 in
Xs=Y|Xr % get element from buffer
End=_|End2 % replenish the buffer
{AskLoop Yr Xr End2}

[] nil then End=nil
end

end
End={Startup N Xs}

in
{AskLoop Ys Xs End}

end

local Xs Ys Result in
thread {Produce 0 Xs} end
thread {Buffer 3 Xs Ys} end
thread Result={Consume Ys 0#0 10} end
{Browse Xs} {Browse Ys} {Browse Result}

end

%Exercise4
%Producer-driven
declare
proc {DataDriven  PAcc PState Term CAcc CState CResult}

local
proc {Produce Acc Xs}

if {Term Acc} then
local Xr NAcc X in
X#NAcc = {PState Acc}
Xs=X|Xr
{Produce NAcc Xr} end

else Xs=nil {Browse ’Term Producer’}
end

end
fun {Consume Xs Acc} NAcc  in

case Xs of X|Xr then
NAcc = {CState X Acc}
%{Browse X}
{Consume Xr NAcc}

else {Browse ’Term Consumer’} {CResult Acc}
end

end
in
local Result Xs in

thread {Produce PAcc Xs} end
thread Result={Consume Xs CAcc} end
{Delay 1000} {Browse Result}

end
end

end
{DataDriven 0 (fun {$ N} N*N#N+1 end) (fun {$ N} N=<100 end)

0#0 (fun {$ X Min#Max} {Value.min Min X}#{Value.max Max X} end)
(fun {$ Acc} Acc end)}


