Programming Language Concepts, CS2104 (17 $7^{\text {th }}$ Sep 2007)

Tutorial 4 Lambda Calculus.
Exercise 1. (Free/Bound) Indicate which occurrences of variables are bound and which ones are free in the following expressions.

1. $(\lambda \mathrm{x} . \mathrm{z}(\mathrm{x}(\lambda \mathrm{x} . \mathrm{y}(\mathrm{z})))) \mathrm{x}$
2. $(\lambda \mathrm{ab} . \mathrm{cdab}) \mathrm{ab}(\lambda \mathrm{cd} . \mathrm{dc})(\lambda \mathrm{ef} . \mathrm{f}) \mathrm{e}$
3. (($\lambda \mathrm{uv} . \lambda \mathrm{w} . \mathrm{w}(\lambda \mathrm{x} . \mathrm{x}(\mathrm{u}))(\mathrm{v}))(\mathrm{v}))(\lambda \mathrm{z} . \lambda \mathrm{y} \cdot \mathrm{z}(\mathrm{y}))$

Exercise 2. (Substitutions) Perform the following substitutions :

$$
\begin{array}{ll}
1 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{y} \cdot \mathrm{x})} \\
2 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x})} \\
3 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{y} \cdot \mathrm{x}((\lambda \mathrm{x} \cdot \mathrm{x}))} \\
4 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{x} \cdot \mathrm{y})} \\
5 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{w} \cdot \mathrm{x})} \\
6 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{z} \cdot \mathrm{x})} \\
7 & {[\mathrm{x} \rightarrow \lambda \mathrm{z} \cdot \mathrm{w}](\lambda \mathrm{z} \cdot \mathrm{zx})} \\
8 & {[\mathrm{x} \rightarrow \lambda \mathrm{x} \cdot \mathrm{w}](\lambda \mathrm{z} \cdot \mathrm{z} w)}
\end{array}
$$

Exercise 3. (Reduction) Reduce the following lambda expressions to their normal form whenever possible.
$1 \quad \mathrm{P} \equiv(\lambda \mathrm{x} . \mathrm{x}(\mathrm{x} y)) \mathrm{I}$ where $\mathrm{I} \equiv \lambda \mathrm{u} . \mathrm{u}$
$2 \mathrm{Y} \equiv \lambda \mathrm{f} . \mathrm{Q} \mathrm{Q}$ where $\mathrm{Q} \equiv(\lambda \mathrm{x} . \mathrm{f}(\mathrm{xx}))$
$3 \mathrm{~L} \equiv(\lambda \mathrm{x} . \mathrm{xxy})(\lambda \mathrm{x} . \mathrm{xxy})$
$4(\lambda \mathrm{x} . \mathrm{x} \mathrm{L}) \mathrm{M}$ where $\mathrm{M} \equiv(\lambda \mathrm{x} . \mathrm{y})$
Exercise 4. (Equivalence) Consider the lambda expressions in Q 3. Determine whether the following pairs of expressions are equivalent or not.

1 L and I
2 P and ($\lambda \mathrm{x} . \mathrm{xL}$) M
$3 \lambda \mathrm{a} \cdot \mathrm{y}$ and M
$4 \lambda \mathrm{a} . \mathrm{y}$ and $\lambda \mathrm{a} . \mathrm{z}$
Exercise 5. (Church boolean) Implement the following two boolean operators in pure lambda calculus.
not - to negate a boolean value
or - find the disjunction of two Boolean values

